TICK-BORNE PATHOGENS DETECTION FROM TICKS INFESTING Malayopython reticulatus (REPTILIA: PYTHONIDAE) SNAKES IN INDONESIA

Downloads
Article Highlights:
- A total of 38 ticks were collected from M. reticulatus, comprising 13 A. helvolum and 25 A. varanense.
- Spotted fever group Rickettsia spp. (7.89%) and reptile-associated Borrelia sp. (2.63%) were detected in male Amblyomma helvolum ticks collected from Malayopython reticulatus snakes in Indonesia.
- Snake-associated ticks may harbor emerging pathogens, underscoring the importance of tick surveillance in reptiles for early disease detection and zoonotic prevention.
Abstract:
Ticks are important arthropod vectors of numerous diseases in humans and animals. Furthermore, ticks are also established vectors and reservoirs of pathogens important to wildlife and human health. Rickettsia and Borrelia are two genera of bacteria that may be transmitted by ticks, and some pathogenic species are zoonosis. This research investigated the prevalence of Rickettsia spp. and Borrelia sp. in Amblyomma helvolum and Amblyomma varanense ticks fed on Malayopython reticulatus and Python bivittatus snakes in Indonesia. A total of 38 ticks were collected from three M. reticulatus snakes, while no ticks were found on the P. bivittatus snake. The 38 ticks consisted of 13 individuals A. helvolum and 25 individuals A. varanense. PCR analysis revealed that three (3/38; 7.89%) male A. helvolum ticks were positive for spotted fever group Rickettsia spp. and one (1/38; 2.63%) male A. helvolum tick was positive for a reptile-associated group Borrelia sp. Although the overall prevalence of tick-borne pathogens was low, this study underscores the importance of monitoring the prevalence and prevention of tick-borne diseases. Surveillance of ticks infesting reptiles can facilitate the early detection of disease transmission to both animals and humans. These findings also suggested that snake-associated ticks may harbor emerging tick-borne pathogens
Downloads
Anastos G. 1950. The Scutate ticks, or Ixodidae, of Indonesia. Entomol Am 1-4:1-144.
Anderson BE, Tzianabos T. 1989. Comparative sequence analysis of a genus-common rickettsial antigen gene. J Bacteriol 171(9):5199-201. DOI: 10.1128/jb.171.9.5199-5201.1989 DOI: https://doi.org/10.1128/jb.171.9.5199-5201.1989
Andoh M, Sakata A, Takano A, Kawabata H, Fujita H, Une Y … Ando S. 2015. Detection of Rickettsia and Ehrlichia spp. in ticks associated with exotic reptiles and amphibians imported into Japan. PLoS One 10(7):e0133700. DOI: 10.1371/journal.pone.0133700 DOI: https://doi.org/10.1371/journal.pone.0133700
Auffenberg T. 1988. Amblyomma helvolum (Acarina: Ixodidae) as a parasite of varanid and scincid reptiles in the Philippines. Int J Parasitol 18(7):937-45. DOI: 10.1016/0020-7519(88)90176-2 DOI: https://doi.org/10.1016/0020-7519(88)90176-2
Bunikis J, Barbour AG. 2005. Third Borrelia species in white-footed mice. Emerg Infect Dis 11(7):1150-1. DOI: 10.3201/eid1107.041355 DOI: https://doi.org/10.3201/eid1107.041355
Burridge MJ. 2001. Ticks (Acari: Ixodidae) spread by the international trade in reptiles and their potential roles in dissemination of diseases. Bull Entomol Res 91(1):3-23. DOI: https://doi.org/10.1079/BER200071
Chao LL, Hsieh CK, Shih CM. 2013. First report of Amblyomma helvolum (Acari: Ixodidae) from the Taiwan stink snake, Elaphe carinata (Reptilia: Colubridae), collected in southern Taiwan. Ticks Tick Borne Dis 4(3):246-50. DOI: 10.1016/j.ttbdis.2012.11.002 DOI: https://doi.org/10.1016/j.ttbdis.2012.11.002
Doornbos K, Sumrandee C, Ruang-Areerate T, Baimai V, Trinachartvanit W, Ahantarig A. 2013. Rickettsia sp. closely related to Rickettsia raoultii (Rickettsiales: Rickettsiaceae) in an Amblyomma helvolum (Acarina: Ixodidae) tick from a Varanus salvator (Squamata: Varanidae) in Thailand. J Med Entomol 50(1):217-20. DOI: 10.1603/me12010 DOI: https://doi.org/10.1603/ME12010
Estrada-Peña A, Jongejan F. 1999. Ticks feeding on humans: A review of records on human-biting Ixodoidea with special reference to pathogen transmission. Exp Appl Acarol 23(9):685-715. DOI: 10.1023/a:1006241108739 DOI: https://doi.org/10.1023/A:1006241108739
Franke J, Hildebrandt A, Dorn W. 2013. Exploring gaps in our knowledge on Lyme borreliosis spirochaetes: Updates on complex heterogeneity, ecology, and pathogenicity. Ticks Tick Borne Dis 4(1-2):11-25. DOI: 10.1016/j.ttbdis.2012.06.007 DOI: https://doi.org/10.1016/j.ttbdis.2012.06.007
Imaoka K, Kaneko S, Tabara K, Kusatake K, Morita E. 2011. The first human case of Rickettsia tamurae infection in Japan. Case Rep Dermatol 3(1):68-73. DOI: 10.1159/000326941 DOI: https://doi.org/10.1159/000326941
Kho KL, Koh FX, Tay ST. 2015. Molecular evidence of potential novel spotted fever group rickettsiae, Anaplasma and Ehrlichia species in Amblyomma ticks parasitizing wild snakes. Parasites Vectors 8:112. DOI: 10.1186/s13071-015-0719-3 DOI: https://doi.org/10.1186/s13071-015-0719-3
Kohls GM. 1957. Malaysian parasites XVII ticks (Ixodoidea) of Borneo and Malaya. Stud Inst Med Res Malaya 28:65-94.
Kolonin GV. 1995. Review of the ixodid tick fauna (Acari: Ixodidae) of Vietnam. J Med Entomol 32:276-82. DOI: 10.1093/jmedent/32.3.276 DOI: https://doi.org/10.1093/jmedent/32.3.276
Mariana A, Vellayan S, Halimaton I, Ho TM. 2011. Acariasis on pet Burmese python, Python molurus bivittatus in Malaysia. Asian Pac J Trop Med 4(3):227-8. DOI: 10.1016/S1995-7645(11)60075-8 DOI: https://doi.org/10.1016/S1995-7645(11)60075-8
Murray-Dickson G, Ghazali M, Ogden R, Brown R, Auliya M. 2017. Phylogeography of the reticulated python (Malayopython reticulatus ssp.): Conservation implications for the worlds' most traded snake species. PLoS One. 12(8):e0182049. DOI: 10.1371/journal.pone.0182049 DOI: https://doi.org/10.1371/journal.pone.0182049
Pandit P, Bandivdekar R, Geevarghese G, Pande S, Mandke O. 2011. Tick infestation on wild snakes in northern part of western Ghats of India. J Med Entomol 48(3):504-7. DOI: 10.1603/me10164 DOI: https://doi.org/10.1603/ME10164
Petney TN, Keirans JE. 1995. Ticks of the genera Amblyomma and Hyalomma from South-East Asia. Trop Biomed 12:45-56.
Phongmany S, Rolain JM, Phetsouvanh R, Blacksell SD, Soukkhaseum V, Rasachack B … Newton PN. 2006. Rickettsial infections and fever, Vientiane, Laos. Emerg Infect Dis 12(2):256-62. DOI: 10.3201/eid1202.050900 DOI: https://doi.org/10.3201/eid1202.050900
Raoult D, Lakos A, Fenollar F, Beytout J, Brouqui P, Fournier PE. 2002. Spotless rickettsiosis caused by Rickettsia slovaca and associated with Dermacentor ticks. Clin Infect Dis 34(10):1331-6. DOI: 10.1086/340100 DOI: https://doi.org/10.1086/340100
Sophia HF, Supriyono, Soviana S, Novianto D, Hadi UK. 2023. Molecular detection of Borrelia spp. (Spirochaetales: Borreliaceae) in ticks (Acari: Ixodidae) collected from tortoises in Java, Indonesia. Biodiversitas 24(12): 6852-7. DOI: 10.13057/biodiv/d241246 DOI: https://doi.org/10.13057/biodiv/d241246
Sumrandee C, Hirunkanokpun S, Doornbos K, Kitthawee S, Baimai V, Grubhoffer L … Ahantarig A. 2014. Molecular detection of Rickettsia species in Amblyomma ticks collected from snakes in Thailand. Ticks Tick Borne Dis 5(6):632-40. DOI: 10.1016/j.ttbdis.2014.04.013 DOI: https://doi.org/10.1016/j.ttbdis.2014.04.013
Supriyono, Takano A, Kuwata R, Shimoda H, Hadi UK, Setiyono A … Maeda K. 2019. Detection and isolation of tick-borne bacteria (Anaplasma spp., Rickettsia spp., and Borrelia spp.) in Amblyomma varanense ticks on lizard (Varanus salvator). Microbiol Immunol 63(8):328-33. DOI: 10.1111/1348-0421.12721 DOI: https://doi.org/10.1111/1348-0421.12721
Takano A, Fujita H, Kadosaka T, Takahashi M, Yamauchi T, Ishiguro F … Kawabata H, 2014. Construction of a DNA database for ticks collected in Japan: application of molecular identification based on the mitochondrial 16S rDNA gene. Med Entomol Zool 65(1):13-21. DOI: 10.7601/mez.65.13 DOI: https://doi.org/10.7601/mez.65.13
Takano A, Goka K, Une Y, Shimada Y, Fujita H, Shiino T, Watanabe H, Kawabata H. 2010. Isolation and characterization of a novel Borrelia group of tick-borne borreliae from imported reptiles and their associated ticks. Environ Microbiol 12(1):134-46. DOI: 10.1111/j.1462-2920.2009.02054.x DOI: https://doi.org/10.1111/j.1462-2920.2009.02054.x
Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596-9. DOI: 10.1093/molbev/msm092 DOI: https://doi.org/10.1093/molbev/msm092
Tay ST, Ho TM, Rohani MY, Shamala D. 2000. Antibody prevalence of Orientia tsutsugamushi, Rickettsia typhi and TT118 spotted fever group rickettsiae among febrile patients in rural areas of Malaysia. Trans R Soc Trop Med Hyg 94:280-4 DOI: https://doi.org/10.1016/S0035-9203(00)90322-5
Trinachartvanit W, Hirunkanokpun S, Sudsangiem R, Lijuan W, Boonkusol D, Baimai V, Ahantarig A. 2016. Borrelia sp. phylogenetically different from Lyme disease- and relapsing fever-related Borrelia spp. in Amblyomma varanense from Python reticulatus. Parasites Vectors 9:359. DOI: 10.1186/s13071-016-1629-8 DOI: https://doi.org/10.1186/s13071-016-1629-8
Copyright (c) 2025 Supriyono, Hana Faizah Sophia, Upik Kesumawati Hadi, Susi Soviana

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree with the following terms:
- Authors retain copyright and grant the journal right of first publication, with the work 1 year after publication simultaneously licensed under a Creative Commons attribution-noncommerical-noderivates 4.0 International License that allows others to share, copy and redistribute the work in any medium or format, but only where the use is for non-commercial purposes and an acknowledgement of the work's authorship and initial publication in this journal is mentioned.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).