OPTIMIZATION OF KINETIN CONCENTRATIONS AND MEDIUM COMPOSITIONS FOR CITRUS SHOOT MULTIPLICATION FROM COTILEDONARY NODE

Authors

  • Kristianto Nugroho Research Center for Horticultural and Estate Crops, BRIN
  • Dr. Mia Kosmiatin Research Center for Horticultural and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, Cibinong Science Center, Jalan Raya Jakarta-Bogor Km. 46, Cibinong, Bogor 16915, West Java, Indonesia
  • Dr. Tri Joko Santoso Research Center for Horticultural and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, Cibinong Science Center, Jalan Raya Jakarta-Bogor Km. 46, Cibinong, Bogor 16915, West Java, Indonesia
  • Prof. Dewi Sukma Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Jalan Meranti, Dramaga Campus, Bogor, 16680 West Java, Indonesia
  • Prof. Agus Purwito Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Jalan Meranti, Dramaga Campus, Bogor, 16680 West Java, Indonesia
  • Dr. Ali Husni Research Center for Horticultural and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, Cibinong Science Center, Jalan Raya Jakarta-Bogor Km. 46, Cibinong, Bogor 16915, West Java, Indonesia
  • Dr. Chaireni Martasari Research Center for Horticultural and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, Cibinong Science Center, Jalan Raya Jakarta-Bogor Km. 46, Cibinong, Bogor 16915, West Java, Indonesia

DOI:

https://doi.org/10.11598/btb.2024.31.1.2136

Keywords:

cotyledonary node, genetic transformation, kinetin, Murashige and Tucker medium, shoot multiplication

Abstract

Plant regeneration post-genetic transformation play an important an role in genome editing activities that should be optimized via several factors such as the composition of the medium and the concentration of plant growth regulators. This study aimed to optimize the kinetin concentrations and medium compositions for shoot multiplication originating from cotyledon node explants of several local citrus cultivars. The cotyledonary nodes from three citrus cultivars (Batu 55, Siam Madu, and Proksi-1 Agrihorti) were incubated in MS medium with Morel and Wetmore vitamins (VMW) supplemented with several kinetin concentrations (0; 0.2; 0.4; 0.6; 0.8; and 1 mg/L). The best kinetin concentrations for number of shoots variable were then combined with MT medium. The results showed that kinetin concentration at 0.8 mg/L gave the best number of shoot in Batu 55 cultivar as well as 1 mg/L concentration in Siam Madu and Proksi-1 Agrihorti cultivars. The combination 1 mg/L kinetin with Murashige and Tucker (MT) medium showed the best number of shoots, percentage of shoot formation, number of leaves, number of nodes, and shoot length in this study. This medium composition could be further used for shoot multiplication in genetic transformation in those three citrus cultivars, including genome editing activities in development of new improved citrus varieties.

Downloads

Download data is not yet available.

References

Abbas M, Hussain SS, Abbas SK, Abbas S, Tahir M, Su Y, Li J, Ahmed N, Khan MS, Gou C. 2023. Optimization of regeneration protocol and prospecting spectinomycin resistance in barley (Hordeum vulgare L.) cv Haider-93. Afr J Biotechnol 22(9): 172-82. doi: 10.5897/AJB2023.17590. DOI: https://doi.org/10.5897/AJB2023.17590

Abrahamian P, Kantharajah A. 2011. Effect of vitamins on in vitro organogenesis of plant. Am J Bot 2: 669-74. doi: 10.4236/ajps.2011.25080. DOI: https://doi.org/10.4236/ajps.2011.25080

Abu-Romman SM, Al-Hadid KA, Arabiyyat AR. 2015. Kinetin is the most effective cytokinin on shoot multiplication from cucumber. J Agric Sci 7(10): 159-165. doi:10.5539/jas.v7n10p159. DOI: https://doi.org/10.5539/jas.v7n10p159

Aisyah DN. 2021. Transformasi gen CRISPR/Cas9-gRNA-CsCs pada tanaman jeruk untuk peningkatan ketahanan terhadap penyakit Huanglongbing. [Transformation of the CRISPR/Cas9-gRNA-CSCc gene in citrus plant for increased resistance to Huanglongbing disease] [Master Thesis]. Retrieved from Institut Pertanian Bogor.

Al-Khayri. 2001. Optimization of biotin and thiamine requirements for somatic embryogenesis of date palm (Phoenix dactylifera L.). In Vitro Cell Dev Biol Plant 37: 453-456. doi: 10.1007/s11627-001-0079-x. DOI: https://doi.org/10.1007/s11627-001-0079-x

Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP, Lemaux PG, Medford JI, Orozco-Cárdenas ML, Tricoli DM, Van Eck J, Voytas DF, Walbot V, Wang K, Zhang ZJ, Stewart Jr CN. 2016. Advancing crop transformation in the era of genome editing. Plant Cell 28(7): 1510–20. doi: https://doi.org/10.1105/tpc.16.00196. DOI: https://doi.org/10.1105/tpc.16.00196

Amin H, Shekafandeh A. 2015. Somatic embryogenesis and plant regeneration from juice vesicles of mexican lime (Citrus aurantifolia L.). Jordan J Biol Sci 11(2): 495-505. doi: 10.12816/0030441. DOI: https://doi.org/10.12816/0030441

Bove JM. 2006. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol 85(4): 265–70. doi: 10.4454/jpp.v88i1.828.

Carimi F, de Pasquale F. 2003. Micropropagation of citrus. In: Jain SM, Ishii K, editors. Micropropagation of Woody Trees and Fruits. Forestry Sciences, vol 75. Dordrecht (NL): Springer. p. 590-619. doi: https://doi.org/10.1007/978-94-010-0125-0_20. DOI: https://doi.org/10.1007/978-94-010-0125-0_20

Dincer D. 2023. Determination of optimal plant growth regulators for breaking seed dormancy and micropropagation of Sorbus aucuparia L. Balt For 29(1): id 679. doi: https://doi.org/10.46490/BF679. DOI: https://doi.org/10.46490/BF679

Dutt M, Mou Z , Zhang X, Tanwir SE, Grosser JW. 2020. Efficient CRISPR/Cas9 genome editing with citrus embryogenic cell cultures. BMC Biotechnology 20: 58. doi: 10.1186/s12896-020-00652-9. DOI: https://doi.org/10.1186/s12896-020-00652-9

Esmaeilnia E, Dehestani A. 2015. In vitro plant regeneration from mature tissues of Thomson navel sweet orange (Citrus sinensis L. Osbeck.). Biharean Biologist 9(1): 9-14.

Fatonah S, Lestari W, Isda MN, Purba L. 2018. In vitro shoot regeneration of Citrus nobilis Lour. from intact seed and cotyledon explants. SABRAO J Breed Genet 50(2): 168-79.

Februyani N, Widoretno W , Indriyani S. 2016. Effect of cell density and benzyl amino purine on the growth of somatic embryo of citrus mandarin Batu 55 (Citrus reticulata Blanco.) in liquid culture. J Exp Life Sci 6 (1): 1-4. doi: https://doi.org/10.21776/ub.jels.2016.006.01.01. DOI: https://doi.org/10.21776/ub.jels.2016.006.01.01

Gulles AA, Bartolome VI, Morantte RIZA, Nora LA. 2014. Randomization and analysis of data using STAR (Statistical Tool for Agricultural Research). Philipp J Crop Sci 39 (1): 137.

Iftikhar Y, Rauf S, Shahzad U, Zahid MA. 2016. Huanglongbing: pathogen detection system for integrated disease management–a review. J Saudi Soc Agric Sci 15(1): 1-11. doi: https://doi.org/10.1016/j.jssas.2014.04.006. DOI: https://doi.org/10.1016/j.jssas.2014.04.006

Jayanti MAD, Sugiyatno A, Roviq M, Maghfoer MD. 2015. Kompatibilitas tujuh varietas calon interstock tanaman jeruk pada batang bawah Japansche Citroen (JC). [Compatibility of seven varieties of pre-citrus plant interstock on the rootstock of Japansche Citroen (JC)]. Jurnal Produksi Tanaman. 10: 1–9.

Kane M. 2011. Propagation by shoot culture. In Trigiano RN, Gray DJ, editors. Plant Tissue Culture, Development, and Biotechnology. Florida (USA): Taylor and Francis Group, LLC. p. 181-192.

Kasprzyk-Pawelec A, Pietrusiewicz J, Szczuka E. 2015. In vitro regeneration induced in leaf explants of Citrus limon L. Burm cv. ‘Primofiore’. Acta Sci Pol Hortorum Cultus 14(4): 143-53.

Kazemiani S, Motallebi-Azar AR, Panahandeh J, Mokhtarzadeh S, Ozdemir FA. 2018. Shoot proliferation from potato (Solanum tuberosum cv. Agria) under different concentration of MS include vitamins and BAP medium. Prog Nutr 20 (1): 160-66. doi: 10.23751/pn.v20i1-S.6686.

Keshavareddy G, Kumar ARV, Ramu S V. 2018. Methods of Plant Transformation- A Review. Int J Curr Microbiol App Sci 7 (7): 2656-68. doi: https://doi.org/10.20546/ijcmas.2018.707.312. DOI: https://doi.org/10.20546/ijcmas.2018.707.312

Khiem DV, Huyen PX, Hang NTT, Hoang NTP. 2022. In vitro regeneration and acclimatization of Anthurium scherzerianum Schott plants. Academia Journal of Biology 44(3): 99–109. doi: 10.15625/2615-9023/16548. DOI: https://doi.org/10.15625/2615-9023/16548

Killiny N, Jones SE, Nehela Y, Hijaz F, Dutt M, Gmitter FG, Grosser JW. 2018. All roads lead to Rome: Towards understanding different avenues of tolerance to huanglongbing in citrus cultivars. Plant Physiol Biochem 129: 1-10. doi: 10.1016/j.plaphy.2018.05.005. DOI: https://doi.org/10.1016/j.plaphy.2018.05.005

Kosmiatin M, Yunita R, Husni A. 2010. Peningkatan toleransi alumunium pada jeruk batang bawah dengan teknik seleksi in vitro berulang. [Aluminum tolerance improvement of rootstock citrus through repeated in vitro selection]. Jurnal AgroBiogen 6(1): 33-9. DOI: https://doi.org/10.21082/jbio.v6n1.2010.p33-39

Kosmiatin M, Purwito A, Wattimena GA, Mariska I. 2014. Embryogenesis induced from endosperm tissues of tangerine (Citrus nobilis Lour.) cv Simadu. J Agron Indones 42(1): 44–51. doi: https://doi.org/10.24831/jai.v42i1.8149.

Kosmiatin M, Husni A. 2018. Perakitan varietas jeruk tanpa biji melalui pemuliaan konvensional dan non konvensional. [Development of seedless citrus through conventional and non-conventional breeding]. J Litbang Pert 37(2): 91-100. doi: 10.21082/jp3.v37n2.2018.p91-100. DOI: https://doi.org/10.21082/jp3.v37n2.2018.p91-100

Kurt S, Ulger S. 2019. Optimizing embryo stage and GA3 doses in common mandarin x Carrizo citrange crosses on embryo rescue technique. Mediterr Agric Sci 32(3): 263-266. doi: 10.29136/mediterranean.488149. DOI: https://doi.org/10.29136/mediterranean.488149

Montalt R, Vives MC, Navarro L, Ollitrault P, Aleza P. 2021. Parthenocarpy and self-incompatibility in mandarins. Agronomy 11(10): 2023. doi: https://doi.org/10.3390/agronomy11102023. DOI: https://doi.org/10.3390/agronomy11102023

Morel G, Wetmore RH. 1951. Tissue culture of monocotyledons. Am J Bot 38: 138-140. DOI: https://doi.org/10.1002/j.1537-2197.1951.tb14803.x

Murashige T, Tucker DPH. 1969. Growth factor requirement of citrus tissue culture. Proceedings of 1st Citrus Symposiums, University of California, Riverside. 3: 1155-61.

Nwe YY, Myint KT, Mochizuki Y, Vazirzanjani M, Okayasu K, Suzuki S, Ogiwara I. 2014. In vitro regeneration through direct shoot organogenesis in honey orange (Citrus tangerina). Plant Biotechnol 31: 341–44. doi: 10.5511/plantbiotechnology.14.0929a. DOI: https://doi.org/10.5511/plantbiotechnology.14.0929a

Pandey SS, Hendrich C, Andrade MO, Wang N. 2022. Candidatus Liberibacter: from movement, host responses, to symptom development of citrus Huanglongbing. Phytopathology 112(1): 55-68. doi: 10.1094/PHYTO-08-21-0354-FI. DOI: https://doi.org/10.1094/PHYTO-08-21-0354-FI

Peng A, Xu L, He Y, Lei T, Yao L, Chen S, Zou X. 2015. Efficient production of marker-free transgenic ‘Tarocco’ blood orange (Citrus sinensis Osbeck) with enhanced resistance to citrus canker using a Cre/loxP site-recombination system. Plant Cell Tiss Organ Cult 123: 1–13. doi: 10.1007/s11240-015-0799-y. DOI: https://doi.org/10.1007/s11240-015-0799-y

Purwito A, Prayogi M, Kosmiatin M, Husni A. 2015. Embriogenesis somatik jeruk keprok (Citrus reticulata L. cv Batu 55) asal hasil perlakuan kolkisin. [Somatic embryogenesis of mann citrus (Citrus reticulata L. cv Batu 55) from callus derived from colchicine treatment]. J Hort Indonesia 6(3): 161-71. doi: https://doi.org/10.29244/jhi.6.3.161-171 DOI: https://doi.org/10.29244/jhi.6.3.161-171

Putra IMA, Purwito1 A, Kosmiatin M. 2015. Propagasi mikro dan sambung mikro jeruk keprok (Citrus reticulata) Garut hasil mutagenesis in vitro dengan batang bawah Japansche Citroen. J Hort Indonesia 6(2): 99-108. doi: https://doi.org/10.29244/jhi.6.2.99-108. DOI: https://doi.org/10.29244/jhi.6.2.99-108

Rao MJ, Ding F, Wang N, Deng X, Xu Q. 2018. Metabolic mechanisms of host species against citrus Huanglongbing (greening disease). Crit Rev Plant Sci 37(6): 496-511. doi: 10.1080/07352689.2018.1544843. DOI: https://doi.org/10.1080/07352689.2018.1544843

Shankar CS, Balaji P, Sekar DS. 2014. Mass propagation of banana (Musa sp.) cv. Grand Naine through direct organogenesis by benzyl adenine purine and kinetin. J Acad Ind Res 3(2): 92-7.

Sukmadjaja D, Kosmiatin M, Wati T. 2022. Characterization of Japansche Citroen rootstock somaclones and in vitro selection for aluminium yolerance. AIP Conf Proc 2462: 020008-1–020008-8. doi: https://doi.org/10.1063/5.0077888. DOI: https://doi.org/10.1063/5.0077888

Vollmer R, Espirilla J, Sánchez JC, Arroyo L, Acosta M, Flores G, Rojas A, Ellis D, Azevedo V. 2023. Thiamine improves in vitro propagation of sweetpotato [Ipomoea batatas (L.) Lam.] – confrmed with a wide range of genotypes. Plant Cell Tissue Organ Cult 152: 253–66. doi: https://doi.org/10.1007/s11240-022-02400-7. DOI: https://doi.org/10.1007/s11240-022-02400-7

Wang N. 2019. The citrus huanglongbing crisis and potential solutions. Mol Plant 12: 607–09. doi: 10.1016/j.molp.2019.03.008. DOI: https://doi.org/10.1016/j.molp.2019.03.008

Zhang S, Liang M, Wang N, Xu Q, Deng X, Chai L. 2018. Reproduction in woody perennial Citrus: an update on nucellar embryony and self incompatibility. Plant Reprod 31: 43–57. doi: https://doi.org/10.1007/s00497-018-0327-4. DOI: https://doi.org/10.1007/s00497-018-0327-4

Zhang D, Zhang Z, Unver T, Zhang B. 2021. CRISPR/Cas: A powerful tool for gene function study and crop improvement. J Adv Res 29: 207–21. doi: https://doi.org/10.1016/j.jare.2020.10.003. DOI: https://doi.org/10.1016/j.jare.2020.10.003

Downloads

Published

2024-04-18

How to Cite

Nugroho, K., Kosmiatin, M., Santoso, T. J., Sukma, D., Purwito, A., Husni, A., & Martasari, C. (2024). OPTIMIZATION OF KINETIN CONCENTRATIONS AND MEDIUM COMPOSITIONS FOR CITRUS SHOOT MULTIPLICATION FROM COTILEDONARY NODE . BIOTROPIA, 31(1). https://doi.org/10.11598/btb.2024.31.1.2136