BIOTECHNOLOGICAL AND ENVIRONMENTAL EDUCATION POTENTIAL OF Inga edulis Martius: SEED COLLECTED IN THE AMAZON - BRAZIL
Potential of Inga edulis seeds
Downloads
Article highlights
- Inga edulis offer potential for biotechnological and environmental applications.
- High protein and carbohydrate content in seeds support diverse agro-industrial uses.
- edulis seeds enhance environmental education via forest nurseries schools.
- Biotechnological potential of I. edulis seeds extends to ecosystem services.
Abstract
Inga edulis Martius is a native species of the Amazon Forest with great potential for urban afforestation in the cities of the Brazilian Amazon and widely used for the recovery of degraded areas. It is commonly cultivated by the Amazonian population for its edible fruit, quality wood, and excellent agroforestry components. This study aimed to select the matrices and obtain information about the behavior of the seeds in terms of drying, biometry, purity and germination, and chemical composition. The seeds collected in the environmental education action were recognized about potentialities of use for biotechnological products and environmental protection. The seed exploitation of this species is attractive due to its composition (protein and carbohydrates) and forest integration. I. edulis seedlings in the schools contribute to environmental education as a sustainable practice with biotechnological potential for the Amazon region.
Downloads
Abd El-latif AO. 2014. In vivo and in vitro inhibition of Spodoptera littoralis gut-serine protease by protease inhibitors isolated from maize and sorghum seeds. Pestic Biochem Physiol 116: 40-8. DOI: 10.1016/j.pestbp.2014.09.009 DOI: https://doi.org/10.1016/j.pestbp.2014.09.009
Abril-Saltos RV, Ruiz-Vázquez TE, Alonso-Lazo J, Cabrera-Murillo GM, Meric OA. 2018. Crecimiento inicial de Eugenia stipitata, Inga spectabilis e Inga edulis en Napo, Ecuador. [Initial Growth of Eugenia stipitata, Inga spectabilis, and Inga edulis in Napo, Ecuador.] Agron Mesoam 29(2): 275-91. DOI: 10.15517/ma.v29i2.28759 DOI: https://doi.org/10.15517/ma.v29i2.28759
Aguiar JPL. 2021. Tabela de Composição de Alimentos da Amazonia. [Amazonian Food Composition Table]. Manaus (BR):Editora INPA. 20 p.
Ahmed N, Zhang B, Chachar Z, Li J, Xiao G, Wang Q, …, Tu P. 2024. Micronutrients and their effects on horticultural crop quality, productivity and sustainability. Sci Hortic 323: 112512. DOI: 10.1016/j.scienta.2023.112512 DOI: https://doi.org/10.1016/j.scienta.2023.112512
Albrecht S, Wiek A. 2021. Food forests: Their services and sustainability. J Agric Food Syst Community Dev 10(3): 91-105. DOI: 10.5304/jafscd.2021.103.014 DOI: https://doi.org/10.5304/jafscd.2021.103.014
Álvarez JC, Serrano RP, Ospina LF, Torres LAA. 1998. Actividad biológica de las saponinas de la corteza de Inga marginata Willde. [Biological activity of saponins from the bark of Inga marginata Willd.]. Rev Colomb Cienc Quim Farm 27:17-9.
Andrews HB, Martin MZ, Wymore AM, Kalluri UC. 2023. Rapid in situ nutrient element distribution in plants and soils using laser-induced breakdown spectroscopy (LIBS). Plant Soil 495(2):3-12. DOI: 10.1007/s11104-023-05988-7 DOI: https://doi.org/10.1007/s11104-023-05988-7
Bahlawan ZAS, Megawati M, Damayanti A, Putri RDA, Permadhini AN, Sulwa K, …, Septiamurti A. 2022. Immobilization of Saccharomyces cerevisiae in Jackfruit (Artocarpus heterophyllus) seed fiber for bioethanol production. ASEAN J Chem Eng 22(1):156-67. DOI: 10.22146/ajche.69781 DOI: https://doi.org/10.22146/ajche.69781
Batista APB, Scolforo HF, Mello JM, Guedes MC, Terra MCNS, Scalon JD, …, Cook RL. 2019. Spatial association of fruit yield of Bertholletia excelsa Bonpl. trees in eastern Amazon. For Ecol Manage 441(6):99-105. DOI: 10.1016/j.foreco.2019.03.043 DOI: https://doi.org/10.1016/j.foreco.2019.03.043
Bilia DAC, Barbedo CJ, Cícero SM, Marcos-Filho J. 2003. Ingá: uma espécie importante para recomposição vegetal em florestas ripárias, com sementes interessantes para a ciência. [Inga: An important species for vegetation restoration in riparian forests, with seeds of interest to science.]. Informativo Abrates 13:26-30.
Caramori SS, Souza A, Fernandes K. 2009. Caracterização bioquímica de frutos de Inga alba (Sw.) Willd. e Inga cylindrica Mart.(Fabaceae). [Biochemical characterization of fruits of Inga alba (Sw.) Willd. and Inga cylindrica Mart. (Fabaceae).]. Rev Saúde e Ambiente 9:16-23.
Carvalho R, Bonfá IS, de Araújo Isaías Muller J, Pando SC, Toffoli-Kadri MC. 2023. Protease inhibitor from Libidibia ferrea seeds attenuates inflammatory and nociceptive responses in mice. J Ethnopharmacol 300:115694. DOI: 10.1016/j.jep.2022.115694 DOI: https://doi.org/10.1016/j.jep.2022.115694
Correa CA, Brugger BP, Anjos N, Zanuncio JC. 2021. Egg characterization and laying pattern of Oncideres saga (Coleoptera: Cerambycidae) in Inga edulis (Fabaceae). Braz J Biol 84(3):e249528. DOI: 10.1590/1519-6984.249528 DOI: https://doi.org/10.1590/1519-6984.249528
Cotabarren J, Lufrano D, Parisi MG, Obregon WD. 2020. Biotechnological, biomedical, and agronomical applications of plant protease inhibitors with high stability: A systematic review. Plant Sci 292:110398. DOI: 10.1016/j.plantsci.2019.110398 DOI: https://doi.org/10.1016/j.plantsci.2019.110398
Cruz ED. 2021. Germinação de sementes de espécies amazônicas: ingá-cipó (Inga edulis Mart.). [Germination of seeds from Amazonian species: ingá-cipó (Inga edulis Mart.).]. Embrapa Amazônia Oriental-Comunicado Técnico 329:1-8.
Damodaran S. 2017. Food proteins and their applications. Boca Raton (US): CRC Press.
de Medeiros AB, Mendonça MJdSL, de Sousa GL, de Oliveira IP. 2011. A Importância da educação ambiental na escola nas séries iniciais. [The importance of environmental education in primary school]. Rev Eletr Fac Montes Belos 4(1):1-17.
de Moura Martins C, de Morais SAL, Martins MM, Cunha LCS, da Silva CV, Teixeira TL, …, de Oliveira A. 2020. Antifungal and cytotoxicity activities and new proanthocyanidins isolated from the barks of Inga laurina (Sw.) Willd. Phytochem Lett 40:109-20. DOI: 10.1016/j.phytol.2020.10.001 DOI: https://doi.org/10.1016/j.phytol.2020.10.001
de Souza MP, Rizzetti TM, Hoeltz M, Dahmer M, Junior JA, Alves G, …, Schneider RCS. 2020. Bioproducts characterization of residual periphytic biomass produced in an algal turf scrubber (ATS) bioremediation system. Water Sci Technol 82(6):1247-59. DOI: 10.2166/wst.2020.343 DOI: https://doi.org/10.2166/wst.2020.343
Dias ALdS, Souza JNSd, Rogez H. 2010. Enriquecimento de compostos fenólicos de folhas de Inga edulis por extração em fase sólida: Quantificação de seus compostos majoritários e avaliação da capacidade antioxidante. [Enrichment of phenolic compounds from Inga edulis leaves by solid-phase extraction: Quantification of its major compounds and evaluation of antioxidant capacity.]. Quim Nova 33(1):38-42. DOI: 10.1590/S0100-40422010000100008 DOI: https://doi.org/10.1590/S0100-40422010000100008
Dias GF, Salgado S. 2023. Educação ambiental, princípios e práticas. [Environmental education, principles and practices]. São Paulo (BR): Editora Gaia. 512 p.
Dib HX, de Oliveira DGL, de Oliveira CFR, Taveira GB, de Oliveira Mello E, Verbisk NV, …, Macedo MLR. 2019. Biochemical characterization of a Kunitz inhibitor from Inga edulis seeds with antifungal activity against Candida spp. Arch Microbiol 201(2):223-33. DOI: 10.1007/s00203-018-1598-8 DOI: https://doi.org/10.1007/s00203-018-1598-8
Domínguez-Núñez JA. 2022. Chapter 25 - Leguminous trees for sustainable tropical agroforestry. In: Meena RS, Kumar S (Editors.). Advances in legumes for sustainable intensification. Cambridge (US): Academic Press. p. 483-504. DOI: https://doi.org/10.1016/B978-0-323-85797-0.00006-9
do Prado DMF, de Almeida AB, de Oliveira Filho JG, Alves CCF, Egea MB, Lemes AC. 2021. Extraction of bioactive proteins from seeds (corn, sorghum, and sunflower) and sunflower byproduct: Enzymatic hydrolysis and antioxidant properties. Curr Nutr Food Sci 17(3):310-20. DOI: 10.2174/1573401316999200731005803 DOI: https://doi.org/10.2174/1573401316999200731005803
Eggert K, von Wirén N. 2016. The role of boron nutrition in seed vigour of oilseed rape (Brassica napus L.). Plant Soil 402(1-2):63-76. DOI: 10.1007/s11104-015-2765-1 DOI: https://doi.org/10.1007/s11104-015-2765-1
Fernandez Barrancos EP, Marquis RJ, Leighton Reid J. 2022. Restoration plantations accelerate dead wood accumulation in tropical premontane forests. For Ecol Manage 508(1):120015. DOI: 10.1016/j.foreco.2022.120015 DOI: https://doi.org/10.1016/j.foreco.2022.120015
Ferro A, Cretton S, Polese AAV, Endringer DC, Cuendet M. 2022. Active compounds from Inga edulis Martius seeds against multiple myeloma. Nat Prod Commun 17(11): 1934578X221131125. DOI: 10.1177/1934578X221131125 DOI: https://doi.org/10.1177/1934578X221131125
Gomes TL, de Souza MC, do Nascimento IC, de Araújo LCA, da Costa LP. 2023. Obtenção de micro e nanocelulose a partir de biomassa lignocelulósica de resíduo do ingá-cipó (Inga edulis Mart.) via tratamento químico. [Obtaining micro and nanocellulose from lignocellulosic biomass of ingá-cipó (Inga edulis Mart.) waste via chemical treatment]. Peer Rev 5(5):88-103. DOI: 10.53660/291.prw603 DOI: https://doi.org/10.53660/291.prw603
Khounani Z, Nazemi F, Shafiei M, Aghbashlo M, Tabatabaei M. 2019. Techno-economic aspects of a safflower-based biorefinery plant co-producing bioethanol and biodiesel. Energy Convers Manage 201:112184. DOI: 10.1016/j.enconman.2019.112184 DOI: https://doi.org/10.1016/j.enconman.2019.112184
Kinupp VF, Lorenzi H, Cavalleiro AdS, Souza VC, Brochini V. 2021. Plantas alimentícias não convencionais (PANC) no Brasil: Guia de identificação, aspectos nutricionais e receitas ilustradas. [Unconventional food plants (UFP) in Brazil: Identification guide, nutritional aspects, and illustrated recipes]. Nova Odessa (BR):Instituto Plantarum de Estudos da Flora.
Kittur BH, Upadhyay AP, Jhariya MK, Raj A, Banerjee A. 2024. Chapter 2 - Agroforestry for resource diversification and sustainable development. In: Jhariya MK, Meena RS, Banerjee A, Kumar S, Raj A (Editors.). Agroforestry for carbon and ecosystem management. Cambridge (US): Academic Press. p. 19-32. DOI: 10.1016/B978-0-323-95393-1.00028-2 DOI: https://doi.org/10.1016/B978-0-323-95393-1.00028-2
Kumar M, Hasan M, Lorenzo JM, Dhumal S, Nishad J, Rais N, …, Zhang B. 2022. Jamun (Syzygium cumini (L.) Skeels) seed bioactives and its biological activities: A review. Food Biosci 50: 102109. DOI: 10.1016/J.FBIO.2022.102109 DOI: https://doi.org/10.1016/j.fbio.2022.102109
Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S. 2016. Moringa oleifera seeds and oil: Characteristics and uses for human health. Int. J. Mol. Sci. 17(12):2141. DOI: 10.3390/ijms17122141 DOI: https://doi.org/10.3390/ijms17122141
Lima JR, Santos ND, Tozzi AMGA, Mansano VF. 2017. Using legumes as indicators in the seasonally dry vegetation types in South America. Ecol Indic 73: 708-15. DOI: 10.1016/j.ecolind.2016.10.030 DOI: https://doi.org/10.1016/j.ecolind.2016.10.030
Lima NM, Andrade TJASA, Silva DHS. 2022. Dereplication of terpenes and phenolic compounds from Inga edulis extracts using HPLC-SPE-TT, RP-HPLC-PDA and NMR spectroscopy. Nat Prod Res 36(1):488-92. DOI: 10.1080/14786419.2020.1786824 DOI: https://doi.org/10.1080/14786419.2020.1786824
Lima NM, Falcoski TOR, Silveira RS, Ramos RR, Andrade TJASA, Costa PI, La Porta FA, Almeida MVA. 2020. Inga edulis fruits: A new source of bioactive anthocyanins. Nat Prod Res 34(19): 2832-6. DOI: 10.1080/14786419.2019.1591395 DOI: https://doi.org/10.1080/14786419.2019.1591395
Lojka B, Dumas L, Preininger D, Polesny Z, Banout J. 2010. The use and integration of Inga edulis in agroforestry systems in the Amazon: Review article. Agric Trop Subtrop 43(4):352-9.
Lokvam J, Kursar TA. 2005. Divergence in structure and activity of phenolic defenses in young leaves of two co-occurring Inga species. J Chem Ecol 31(11):2563-80. DOI: 10.1007/s10886-005-7614-x DOI: https://doi.org/10.1007/s10886-005-7614-x
Luis Val A, Wood CM. 2022. Global change and physiological challenges for fish of the Amazon today and in the near future. J Exp Biol 225(10):jeb216440. DOI: 10.1242/jeb.216440 DOI: https://doi.org/10.1242/jeb.216440
Macedo ML, Freire Md, Franco OL, Migliolo L, de Oliveira CF. 2011. Practical and theoretical characterization of Inga laurina Kunitz inhibitor on the control of Homalinotus coriaceus. Comp Biochem Physiol B Biochem Mol Biol 158(2):164-72. DOI: 10.1016/j.cbpb.2010.11.005 DOI: https://doi.org/10.1016/j.cbpb.2010.11.005
Marinho CR, Souza CD, Barros TC, Teixeira SP. 2014. Scent glands in legume flowers. Plant Biol 16(1):215-26. DOI: 10.1111/plb.12000 DOI: https://doi.org/10.1111/plb.12000
Martins WBR, Rodrigues JIdM, de Oliveira VP, Ribeiro SS, Barros WdS, Schwartz G. 2022. Mining in the Amazon: Importance, impacts, and challenges to restore degraded ecosystems. Are we on the right way? Ecol Eng 174:106468. DOI: 10.1016/j.ecoleng.2021.106468 DOI: https://doi.org/10.1016/j.ecoleng.2021.106468
Mata MF. 2009. O gênero Inga (Leguminosae, momosoideae) no nordeste do Brasil: Citogenética, taxonomia e tecnologia de sementes. [The genus Inga (Leguminosae, Mimosoideae) in Northeast Brazil: Cytogenetics, taxonomy, and seed technology.]. [Dissertation]. Areia (BR): Centro de Ciencas Agrarias, the Federal University of Paraíba.
Naeem M, Shabbir A, Aftab T, Khan MMA. 2022. Lablab bean (Lablab purpureus L.): An untapped resilient protein reservoir. In: Farooq M, Siddique KHM (Editors.). Neglected and underutilized crops. Cambridge (US): Academic Press, p. 391-411. DOI: 10.1016/B978-0-323-90537-4.00018-1 DOI: https://doi.org/10.1016/B978-0-323-90537-4.00018-1
Neri-Numa IA, Carvalho-Silva LB, Morales JP, Malta LG, Muramoto MT, Ferreira JEM, …, Pastore GM. 2013. Evaluation of the antioxidant, antiproliferative and antimutagenic potential of araçá-boi fruit (Eugenia stipitata Mc Vaugh: Myrtaceae) of the Brazilian Amazon Forest. Food Res Int 50:70-6. DOI: 10.1016/j.foodres.2012.09.032 DOI: https://doi.org/10.1016/j.foodres.2012.09.032
Nichols JD, Carpenter FL. 2006. Interplanting Inga edulis yields nitrogen benefits to Terminalia amazonia. For Ecol Manage 233(2-3):344-51. DOI: 10.1016/j.foreco.2006.05.031 DOI: https://doi.org/10.1016/j.foreco.2006.05.031
Ordóņez JA. 2004. Tecnologia de alimentos: Componentes dos alimentos e processos. Vol. 1. [Food technology: Components of food and processes]. São Paulo (BR): Artmed. 294 p.
Pinheiro DM, Porto KRA, Menezes MES. 2005. Conversando sobre ciências em Alagoas: A quimica dos alimentos: Carboidratos, lipideos, proteinas, vitaminas e minerais. [Talking about Science in Alagoas: The chemistry of food: carbohydrates, lipids, proteins, vitamins and minerals]. Maceió (BR):Editora da Universidade Federal de Alagoas.
Pritchard HW, Haye AJ, Wright WJ, Steadman KJ. 1995. A comparative study of seed viability in Inga species: Desiccation tolerance in relation to the physical characteristics and chemical composition of the embryo. Seed Sci Technol 23(1):85-100.
Ribeiro EP, Seravalli EAG. 2007. Química de alimentos. Sao Paolo (BR): Blucher. 196 p.
Rodrigues JK, Cavalcanti JHF, Silva PO, de Lima e Borges EE, Junior AdRN, Gonçalves JFdC. 2021. Unraveling relationships of prompt germination among four species of Inga mill detected by morpho-anatomical and histochemical traits. Flora 285:151941. DOI: 10.1016/j.flora.2021.151941 DOI: https://doi.org/10.1016/j.flora.2021.151941
Rollo A, Ribeiro MM, Costa RL, Santos C, Clavo PZM, Mandák B, …, Lojka B. 2020. Genetic structure and pod morphology of Inga edulis cultivated vs. wild populations from the Peruvian Amazon. Forests 11(6):655. DOI: 10.3390/f11060655 DOI: https://doi.org/10.3390/f11060655
Santos JC, de Araujo NAV, Venâncio H, Andrade JF, Alves-Silva E, Almeida WR, Carmo-Oliveira R. 2016. How detrimental are seed galls to their hosts? Plant performance, germination, developmental instability and tolerance to herbivory in Inga laurina, a leguminous tree. Plant Biol 18(6):962-72. DOI: 10.1111/plb.12495 DOI: https://doi.org/10.1111/plb.12495
Scremin Dias E, Battilani J, Souza ALT, Pereira SR, Kalife C, Souza PRd, Jeller H, 2006. Manual de produção de sementes de espécies florestais nativas. Série:Rede de sementes do Pantanal. [Manual for the production of seeds of native forest species. Series: Pantanal seed network]. Campo Grande (BR): Editora da UFSM.
Silva AL, Bezerra LP, Freitas CDT, Silva AFB, Mesquita FP, Neto NAS, …, Souza PFN. 2022. Luffa operculata seed proteins: Identification by LC-ESI-MS/MS and biotechnological potential against Candida albicans and C. krusei. Anal Biochem 655:114851. DOI: https://doi.org/10.1016/j.ab.2022.114851
Silva EM, Rogez H, Larondelle Y. 2007. Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Sep Purif Technol 55(3):381-7. DOI: 10.1016/j.seppur.2007.01.008 DOI: https://doi.org/10.1016/j.seppur.2007.01.008
Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW. 2010. Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agric Food Chem 58(16):9043-53. DOI: 10.1021/jf1008023 DOI: https://doi.org/10.1021/jf1008023
Solis R, Vallejos-Torres G, Arévalo L, Marín-Díaz J, Ñique-Alvarez M, Engedal T, Bruun TB. 2020. Carbon stocks and the use of shade trees in different coffee growing systems in the Peruvian Amazon. J. Agr. Sci. 158(6):450-60. DOI: 10.1017/S002185962000074X DOI: https://doi.org/10.1017/S002185962000074X
Soltan M, Elsamadony M, Mostafa A, Awad H, Tawfik A. 2019. Nutrients balance for hydrogen potential upgrading from fruit and vegetable peels via fermentation process. J Environ Manage 242:384-93. DOI: 10.1016/j.jenvman.2019.04.066 DOI: https://doi.org/10.1016/j.jenvman.2019.04.066
Tauchen J, Bortl L, Huml L, Miksatkova P, Doskocil I, Marsik P, …, Kokoska L. 2016. Phenolic composition, antioxidant and anti-proliferative activities of edible and medicinal plants from the Peruvian Amazon. Rev Bras Farmacogn 26(6):728-37. DOI: 10.1016/j.bjp.2016.03.016 DOI: https://doi.org/10.1016/j.bjp.2016.03.016
Tavano OL, Berenguer-Murcia A, Secundo F, Fernandez-Lafuente R. 2018. Biotechnological applications of proteases in food technology. Compr Rev Food Sci Food Saf 17(2):412-36. DOI: 10.1111/1541-4337.12326 DOI: https://doi.org/10.1111/1541-4337.12326
The Brazil Flora Group. 2021. Flora do Brasil 2020. Rio de Janeiro (BR): Jardim botânico do Rio de Janeiro [Botanical Garden of Rio de Janeiro]. 31 p. DOI: 10.47871/jbrj2021001 DOI: https://doi.org/10.47871/jbrj2021001
Ugolini L, Cinti S, Righetti L, Stefan A, Matteo R, D’Avino L, Lazzeri L. 2015. Production of an enzymatic protein hydrolyzate from defatted sunflower seed meal for potential application as a plant biostimulant. Ind Crops Prod 75(A):15-23. DOI: 10.1016/j.indcrop.2014.11.026 DOI: https://doi.org/10.1016/j.indcrop.2014.11.026
Ullmann AP, Zaccaron G, Luz ITd, Tombini C, Lajús CR, Machado Junior FRdS, Dalcanton F. 2023. Elaboração de queijo vegano à base de castanha de caju. In: Ciência e tecnologia de alimentos: O avanço da ciência no Brasil. [Development of cashew nut-based vegan cheese. In: Food science and technology: The advancement of science in Brazil] 3:203-11. DOI: 10.37885/230212082 DOI: https://doi.org/10.37885/230212082
Urruth LM, Bassi JB, Chemello D. 2022. Policies to encourage agroforestry in the Southern Atlantic Forest. Land Use Policy 112:105802. DOI: 10.1016/j.landusepol.2021.105802 DOI: https://doi.org/10.1016/j.landusepol.2021.105802
Veloso Chaves MdC, de Gouveia JPG, Almeida FAC, Araujo Leite JC, da Silva FLH. 2004. Caracterização físico-química do suco da acerola. [Physicochemical characterization of acerola juice]. Rev Biol Ciênc Terra 4(2). .
Vieira TA, Panagopoulos T. 2024. Urban agriculture in Brazil: Possibilities and challenges for Santarém, eastern Amazonia. Land Use Policy 139:107082. DOI: 10.1016/j.landusepol.2024.107082 DOI: https://doi.org/10.1016/j.landusepol.2024.107082
Yu D, Li C, Wang L, Zhang J, Liu J, Wei Y. 2016. Multiple effects of trace elements on methanogenesis in a two-phase anaerobic membrane bioreactor treating starch wastewater. Appl Microbiol Biotechnol 100(15):6631-42. DOI: 10.1007/s00253-016-7289-y. DOI: https://doi.org/10.1007/s00253-016-7289-y
Copyright (c) 2024 André Vilhena de Oliveira , Maurício Kersting, Adilson Ben da Costa, Rosana de Cassia de Souza Schneider
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree with the following terms:
- Authors retain copyright and grant the journal right of first publication, with the work 1 year after publication simultaneously licensed under a Creative Commons attribution-noncommerical-noderivates 4.0 International License that allows others to share, copy and redistribute the work in any medium or format, but only where the use is for non-commercial purposes and an acknowledgement of the work's authorship and initial publication in this journal is mentioned.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).