6 – BENZYLAMINOPURINE INDUCES HIGH-FREQUENCY MULTIPLICATION IN VULNERABLE Curcuma pseudomontana J. Graham.: A POTENTIAL EX VIVO CONSERVATION TOOL

Authors

  • Gayatri Vaze College of Pharmacy, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi – 590 010, India
  • Pramod Hurkadale
  • Harsha Hegde National Institute of Traditional Medicine, Indian Council of Medical Research, Nehru Nagar, Belagavi – 590 010, India

DOI:

https://doi.org/10.11598/btb.2024.31.1.2120

Keywords:

conservation, curcuma pseudomontana, micropropagation, vulnerable, western ghats

Abstract

A rapid high-frequency multiplication protocol is designed for Curcuma pseudomontana J. Graham, belonging to the family Zingiberaceae, an endemic species to the Western Ghats of India. The IUCN Red List of Threatened Taxa mentions this species as vulnerable due to multiple underlying causes. The Plant is extensively used in traditional and tribal medicine. The species has suffered habitat loss due to uncontrolled use for tribal medicine leading to a 30% loss in the last decade. This study is planned with a specific objective to conserve the species, and this is the first-ever report of micropropagation of Curcuma pseudomontana J. Graham using in vitro multiplication. An efficient rapid protocol for Micropropagation is developed using rhizome bud explants. The explants are transferred from MS basal medium onto the MS medium fortified with BAP, KN, TDZ at a varying concentration range. The maximum shoot induction is observed in MS medium enriched with BAP 2mg L-1resulting in 9.66 ±2.08 number of shoots per explant with a shoot length of 6.40 ±0.36cm. The root induction response is studied by aseptically transferring the shoots onto MS medium fortified with NAA, IBA, and IAA at varying concentration. Maximum root length and root number is recorded in MS supplemented with 1- Naphthalene Acetic Acid (NAA) at 0.5 mg L-1. However, a 100 % root induction frequency is observed in all the samples under study. The rooted plantlets are removed from the culture flasks and transferred into hardening media containing 1:1:1 ratio of Sand: Soil: Cocopeat. The hardened plants are healthy and disease-free and showed a 92% survival after acclimatization.

Downloads

Download data is not yet available.

References

Barbara MR, Viswambharan S, Michaek K, Eric B & Valerie CP. 2011. Biodiversity conservation and conservation biotechnology tools. In vitro Cellular & Developmental Biology -Plant.47: 1-4. DOI: https://doi.org/10.1007/s11627-010-9337-0

Bawa KS, Das A, Krishnaswamy J, Karanth KU, Kumar NS and Rao M. 2007. Ecosystem Profile: Western Ghats and Sri Lanka Biodiversity Hotspot - Western Ghats Region. Critical Ecosystems Partnership Fund, Virginia.

Bejoy M, Dan M, Anish NP. 2006. Factors affecting the in vitro multiplication of the endemic zingiber Curcuma haritha Mangaly and Sabu. Asian J. Plant Sci.5(5): 847-53. DOI: https://doi.org/10.3923/ajps.2006.847.853

Bejoy M, Dan M, Anish NP, Nair AR, Radhika BJ, Manesh K.2012. Micropropagation of an Indian Ginger (Curcuma vamana Sabu and Mangaly): a wild relative of turmeric. Biotechnology. 11(6): 333-8. DOI: https://doi.org/10.3923/biotech.2012.333.338

Bharalee R, Das A, Kalita MC. In vitro clonal propagation of Curcuma caesia Roxb and Curcuma zedoaria Rosc from rhizome bud explants.2005. Journal of Plant Biochemistry and Biotechnology. 14: 61-3. DOI: https://doi.org/10.1007/BF03263228

Bisht V.S., Kandwal S, Kanan D, Som D. 2014. Anticancerous and antiproliferative/cytotoxic activity of Curcuma pseudomontana (hill turmeric) collected from the sub-Himalayan region of Uttrakhand, India. Asian Journal of Plant Science and Research.4(6): 25-31.

Hiremath GB, and Kaliwal BB. 2013. Antitubercular activity of the rhizome of Curcuma pseudomontana J. Graham. International Journal of Pharmaceuticals and Health care Research, Int. J. Pharm. & H. Care Res.01 (04): 178-183.

Hiremath GB, Kaliwal BB. 2014. Pharmacognostic evaluation of rhizome of Curcuma pseudomontana j. Graham. International Journal of Pharma and Bio Sciences, Int J pharm bio sci. 5(2): 242-250.

Jagtap SD, Deokule SS, Bhosle SV. 2006. Some unique ethnomedicinal uses of plants used by the Korku tribe of Amravati district of Maharashtra, India. Journal of Ethnopharmacology. 107: 463-469. DOI: https://doi.org/10.1016/j.jep.2006.04.002

Koarapatchaikol K, Kanmarangkol S, Kaewraksa J. 2017. In vitro Plant Regeneration via Callus Culture in Turmeric (Curcuma longa L.) Burapha Science Journal.22(1).

Kou Y, Ma G, Silva JA. 2013. Callus induction and shoot organogenesis from anther cultures of Curcuma attenuata Wall. Plant Cell and Organ Culture. 112:1-7. DOI: https://doi.org/10.1007/s11240-012-0205-y

Loc NH, Duc DT, Kwon TH, & Yang MS, 2005. Micropropagation of zedoary (Curcuma zedoaria Roscoe)–a valuable medicinal plant. Plant cell, tissue and organ culture.81: 119-122. DOI: https://doi.org/10.1007/s11240-004-3308-2

Mohanty S, Panda MK, Subudhi E, Nayak S. 2008. Plant regeneration from callus culture of Curcuma aromatica and in vitro detection of somaclonal variation through cytophotometric analysis. Biologia Plantarum.52(4): 783-786. DOI: https://doi.org/10.1007/s10535-008-0153-x

Molur S, Walker S. 1997. Conservation Assessment and Management Plan Workshop.

Murashige T, & Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15(3): 473-497. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nayak S. 2000. In vitro multiplication and microrhizome induction in Curcuma aromatica Salisb. Plant Growth Regulation. 32(1): 41-7. DOI: https://doi.org/10.1023/A:1006307316393

Nayak S, Naik PK. 2006. Factors effecting in vitro microrhizome formation and growth in Curcuma longa L. and improved field performance of micropropagated plants. Science Asia.32(1): 31-7. DOI: https://doi.org/10.2306/scienceasia1513-1874.2006.32.031

Prasad M.N. V, Padmalatha, Jayaram K., Raju N.L. 2006. Healing plants of Andhra Pradesh-indigenous knowledge, trade, threats, and conservation strategies. Proc.A.P.Academi of Sciences. 10(2): 109-120.

Prakash S., Elangomathavan R., Seshadri S., Kathairavan K., Ignacimuthu. 2004. Efficient Regeneration of Curcuma amada Roxb. Plantlets from Rhizome and Leaf Sheath Explants. Plant Cell, Tissue and Organ Culture.78(2): 159-165. DOI: https://doi.org/10.1023/B:TICU.0000022553.83259.29

Raihana R, Faridah QZ, Julia AA, Abdelmageed AH, Kadir MA.2011. In vitro culture of Curcuma mangga from rhizome bud. Journal of Medicinal Plant Research. 5(28): 6418-22. DOI: https://doi.org/10.5897/JMPR11.673

Ravikumar K, Ved DK, assisted by Vijaya Sankar. 2000. 100 Red Listed Medicinal Plants of conservation concern in Southern India-Illustrated field guide.

Ravindran PN, Babu KN, Sivaraman K, editors. 2007. Turmeric: the genus Curcuma.CRC press. DOI: https://doi.org/10.1201/9781420006322

Romand-Monnier, F. & Contu, S. 2013. Curcuma pseudomontana. The IUCN Red List of Threatened Species 2013: e.T22486190A44506743. DOI: 10.2305/ IUCN.UK.2013-1.RLTS. T22486190A44506743.en.

Sabu M. 2006 Zingiberaceae and Costaceae of South India, Indian Association of Angiosperm taxonomy.

Salvi ND, George L, Eapen S. 2000. Direct regeneration of shoots from immature inflorescence cultures of turmeric. Plant Cell, Tissue and Organ Culture.62: 235-238. DOI: https://doi.org/10.1023/A:1006459822879

Salvi ND, George L, Eapen S. 2001. Plant regeneration from leaf base callus of turmeric and random amplified polymorphic DNA analysis of regenerated plants. 2001.Plant Cell,Tissue and Organ Culture.66: 13-119. DOI: https://doi.org/10.1023/A:1010638209377

Santapau H. 1945. Curcuma pseudomontana Grah. Journal of the Bombay Natural History Society 45: 618-623.

Sasikumar B. 2005. Genetic resources of Curcuma: diversity, characterization and utilization. Plant Genetic Resources. 3(2): 230-51. DOI: https://doi.org/10.1079/PGR200574

Shanthala AA, Dilkalal A, Umesh TG. 2021. An Efficient Invitro Approach for Direct and Callus Mediated Regeneration of Curcuma karnatakensis–An Endemic Plant of Karnataka. Journal of Herbs, Spices & Medicinal Plants.27(3): 229-41. DOI: https://doi.org/10.1080/10496475.2020.1806166

Shirgurkar MV, John CK, Nadgauda RS. 2001. Factors affecting in vitro microrhizome production in turmeric. Plant Cell, Tissue and Organ Culture. 64: 5-11. DOI: https://doi.org/10.1023/A:1010645624618

Sundram., Suffian M. Annuar M., Khalid N. 2012. Optimization of culture condition for callus induction from shoot buds for establishment of rapid growing cell suspension cultures of Mango ginger (Curcuma mangga) Tamil C.M. AJCS. 6(7): 1139-1146.

Theanphing O, Songsak T, Kerdmanee C. 2010. Effect of plant growth regulators on micropropagation of Curcuma aeruginosa Roxb.Thai journal of botany. 2: 135-142.

Toppoonyanont N, Chongsang S, Chujan S, Somsueb S, Nuamjaroen P. 2004. Micropropagation Scheme of Curcuma alismatifolia Gagnep. InIX International Symposium on Flower Bulbs. 673(98): 705-712. DOI: https://doi.org/10.17660/ActaHortic.2005.673.98

Ugochukwu S., Bob E. 2013. Shoot Proliferation of In vitro Turmeric (Curcuma longa L.) Affected by Different Concentrations of Benzylaminopurine. World Journal of Agricultural. 9(3): 227-230.

Yasuda K, Tsuda T, Shimizu H, Sugaya A. 1988. Multiplication of Curcuma species by tissue culture. Planta Med. 54(1): 75-79. DOI: https://doi.org/10.1055/s-2006-962344

Zhang S, Liu N, Sheng A, Ma G, Wu G. 2011. In vitro plant regeneration from organogenic callus of Curcuma kwangsiensis Lindl. (Zingiberaceae).Plant Growth Regulation. 64(2): 141-145. DOI: https://doi.org/10.1007/s10725-010-9548-8

Downloads

Published

2024-04-18

How to Cite

Vaze, G., Pramod Hurkadale, & Hegde, H. (2024). 6 – BENZYLAMINOPURINE INDUCES HIGH-FREQUENCY MULTIPLICATION IN VULNERABLE Curcuma pseudomontana J. Graham.: A POTENTIAL EX VIVO CONSERVATION TOOL. BIOTROPIA, 31(1), 87–95. https://doi.org/10.11598/btb.2024.31.1.2120