RESPONSE OF Amaranthus viridis PLANT FUNCTIONAL TRAITS TO NPK 12:12:17 AND NPK 15:15:15 FERTILIZERS

Authors

  • Pei Sin Tong University Tunku Abdul Rahman
  • Ker Ning Chew
  • Hoe Yin Yik
  • Jin Zhe Tan

DOI:

https://doi.org/10.11598/btb.2024.31.1.2020

Keywords:

Amaranthus viridis, herbicides, plant functional traits, weed biology, weed management

Abstract

   A paradigm shift from the prevailing reliance on chemical methods to alternative weed-control approaches is necessary to achieve sustainable weed management. However, the understanding of weed biology explaining “how” and “why” remains insufficient in facilitating this shift. This study employed a trait-based approach — examined the number of leaves, number of inflorescences, and height — to investigate the growth and developmental patterns of Amaranthus viridis, a weed species in the tropics, in response to NPK fertilization. The experiments were carried out in three sets of weeds — wild population (untreated and not transplanted; n = 6), NPK 15:15:15 (transplanted and fertilized with NPK 15:15:15 from March 2020 to September 2020; n = 30), and NPK 12:12:17 (transplanted and fertilized with NPK 12:12:17 from May 2021 to September 2021). The NPK treatment sets comprised five treatments, including one untreated control, with six replications for each treatment. Pearson’s correlation coefficient (r) and linear regression (R2) in three models were estimated using leaves, inflorescences and height as dependent and independent variables. In Model 1, the number of leaves was the dependent variable and plant height was the independent variable; Model 2 included the number of inflorescences as the dependent variable and the number of leaves as the independent variable, whereas the number of inflorescences as the dependent variable and number of leaves and height as the independent variables were used in Model 3. All models exhibited a significantly positive correlation and R2 (p < 0.01). Specifically, Model 3, examining the interactions of inflorescence with leaf numbers and plant height, demonstrated higher values for both r and R2. In conclusion, this study reveals the distinct patterns of functional traits in A. viridis in response to fertilizers and within wild populations, providing predictive models applicable to diverse data types, with implications for understanding inherent growth and responses of weed species for sustainable weed management practices, particularly in collaboration with smallholder farmers.

Downloads

Download data is not yet available.

Author Biographies

Pei Sin Tong, University Tunku Abdul Rahman

Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia

Ker Ning Chew

Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia

Hoe Yin Yik

Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia

Jin Zhe Tan

Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia

References

Allinson M, Zhang P, Bui A, Myers JH, Pettigrove V, Rose G, Salzman SA, Walters R, Allinson G. 2017. Herbicides and trace metals in urban waters in Melbourne, Australia (2011-12): concentrations and potential impact. Environ Sci Pollut Res 24(8):7274-84. doi: 10.1007/s11356-017-8395-9 DOI: https://doi.org/10.1007/s11356-017-8395-9

Amjad M, Ahmad T, Iqbal Q, Nawaz A., Jahangir MM. 2013. Herbicide contamination in carrot growth in Punjab, Pakistan. Pak J Agric Sci 50(1): 7-10.

Bastiaans L, Kropff MJ, Goudriaan J, van Laar HH. 2000. Design of weed management systems with a reduced reliance on herbicide poses new challenges and prerequisites for modelling crop-weed interactions. Field Crops Res 67(2): 161-79. DOI: https://doi.org/10.1016/S0378-4290(00)00091-5

Bourgeois B, Munoz F, Fried G, Mahaut L, Armengot L, Denelle P, Storkey J, Gaba S, and Violle C. 2019. What makes a weed a weed? A large-scale evaluation of arable weeds through a functional lens. Am J of Bot 106(1):90-100. doi: 10.1002/ajb2.1213 DOI: https://doi.org/10.1002/ajb2.1213

Cavers PB, Darbyshire SJ, Mulligan, GA. 2013. History of the series on the biology of Canadian weeds. Can J Plant Sci 93: 351-61. DOI: https://doi.org/10.4141/cjps2013-500

Chaney L, Baucom RS. 2012. The evolutionary potential of Baker’s weediness traits in the common morning glory, Ipomea purpurea (Convolvulaceae). Am J of Bot 99(9):1524-30. DOI: https://doi.org/10.3732/ajb.1200096

Chauhan BS, Matloob A, Mahajan G, Aslam F, Florentine SK, Jha P. 2017. Emerging challenges and opportunities for education and research in weed science. Front Plan Sci [Internet]. [cited 2023 Mar 20]; 8:1537. doi: 10.3389/fpls.2017.01537 DOI: https://doi.org/10.3389/fpls.2017.01537

Clements DR, DiTommasa A, Hyvonen T. 2014. Ecology and management of weeds in a changing climate. In: Chauhan BS, Mahajan G, editors. Recent advances in weed management: Springer Publishing. p. 13-38. DOI: https://doi.org/10.1007/978-1-4939-1019-9_2

Dambreville A, Lauri P-É, Normand F, Guédon Y. 2015. Analysing growth and development of plants jointly using developmental growth stages. Ann Bot 115(1): 93-105. DOI: https://doi.org/10.1093/aob/mcu227

de Mol, F., von Redwitz, C. and Gerowitt, B., 2015. Weed species composition of maize fields in Germany is influenced by site and crop sequence. Weed Research, 55(6): 574-585. DOI: https://doi.org/10.1111/wre.12169

Fryer JD. 1981. Weed management: fact or fable? Philosophical Transactions of the Royal Society of London. Proc Royal Soc B 295: 185-97. DOI: https://doi.org/10.1098/rstb.1981.0132

Gaba S, Gabriel E, Chadoeuf J, Bonneu F, Bretagnolle V. 2016. Herbicides do not ensure for higher wheat yield, but eliminate rare plant species. Sci Rep [Internet]. [cited 2023 Mar 21]; 6. doi: 10.1038/srep30112 DOI: https://doi.org/10.1038/srep30112

Gaba S, Perronne R, Fried G, Gardarin A, Bretagnolle F, Biju-Duval L, Colbach N, Cordeau S, Fernandez-Aparicio M, Gauvrit C, Gibot-Leclerc N, Guillemin J-P, Moreau D, Munier-Jolain N, Strbik F, Reboud X. 2017. Response and effect traits of arable weeds in agro-ecosytems: a review of current knowledge. Weed Res. 57(3): 123-47. DOI: https://doi.org/10.1111/wre.12245

Garnier E, Navas M-L. 2012. A trait-based approach to comparative functional plant ecology: concepts, methods and applications for agroecology. A review. Agron for Sustain Dev 32:365-99. doi: 10.1007%2Fs13593-011-0036-y DOI: https://doi.org/10.1007/s13593-011-0036-y

Gharde Y, Singh PK., Dubey RP, Gupta, PK. 2018. Assessment of yield and economic losses in agriculture due to weeds in India. Crop Protection 107:12-8. doi: 10.1016/j.cropro.2018.01.007 DOI: https://doi.org/10.1016/j.cropro.2018.01.007

Groves RH, Panetta FD. 2014. The biology of Australian weeds – a short history of the series. Plant Prot Q 29(4): 127-30.

Hall JC, Van Eerd LL, Miller SD, Owen MDK, Prather TS, Shaner DL, Singh M, Vaughn K, Weller, SC. 2000. Future research directions for weed science. Weed Technol [Internet]. [cited 2023 Mar 21]; 14(3):647-58. Available from: doi: 10.1614/0890-037X(2000)014[0647:FRDFWS]2.0.CO;2

Hanzawa FM, Kalisz S. 1993. The relationship between age, size, and reproduction in Trillium grandiflorum (Liliaceae). Am J Bot 80(4): 405-10. doi: 10.2307/ 2445387 DOI: https://doi.org/10.1002/j.1537-2197.1993.tb13819.x

He N, Li Y, Liu C, Xu L, Li M, Zhang J, He J, Tang Z, Han X, Ye Q, Xiao C, Yu Q, Liu S, Niu S, Li S, Sack L, Yu G. 2020. Plant trait networks: improved resolution of the dimensionality of adaptation. Trends Ecol Evol 35(10):908-18. doi: 10.1016/j.tree.2020.06.003 DOI: https://doi.org/10.1016/j.tree.2020.06.003

Hegazy AK, Fahmy GM, Ali M, Gomaa NH. 2005. Growth and phenology of eight common weed species. J Arid Environ 61:171-83. doi: 10.1016/j.jaridenv.2004.07.005 DOI: https://doi.org/10.1016/j.jaridenv.2004.07.005

Jordan N, Schut M, Graham S, Barney JN, Childs DZ, Christensen S, Cousens RD, Davis AS, Eizenberg H, Ervin DE, Fernandez-Quintanilla C, Harrison LJ, Harsch MA, Heijting S, Liebman M, Loddo D, Mirsky SB, Riemens M, Peltzer DA, Renton M, Williams M, Recasens J, Sønderskov M. 2016. Transdisciplinary weed research: new leverage on challenging weed problems? Weed Res 56(5): DOI: https://doi.org/10.1111/wre.12219

-58.

Kim K-H, Kabir E, Jahan SA. 2017. Exposure to pesticides and associated human health effects. Sci Total Environ 575(1):525-35. doi: 10.1016/j.scitotenv.2016.09.009 DOI: https://doi.org/10.1016/j.scitotenv.2016.09.009

Kirkpatrick M. 1984. Demographic models based on size, not age, or organisms with indeterminate growth. Ecol 65(6): 1874-84. doi: 10.2307/1937785 DOI: https://doi.org/10.2307/1937785

Kunstler G, Falster D, Goomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vielledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JHC, Gourlet-Fleury S, Hanewinkel M, Herault B, Kattge J, Kurokawa H, Onoda Y, Peñuelas J, Poorter H, Uriarte M, Richardson S, Ruiz-Benito P, Sun I-F, Ståhl G, Swenson NG, Thompson J, Westerlund B, Wirth C, Zavala MA, Zeng H, Zimmermen JK, Zimmermen NE, Westoby M. 2016. Plant functional traits have globally consistent effects on competition. Nature 259: 204-20. doi: 10.1038/nature16476 DOI: https://doi.org/10.1038/nature16476

Lavorel S, Garnier E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16: 545-56. doi: 10.1371/journal.pone.0127795 DOI: https://doi.org/10.1046/j.1365-2435.2002.00664.x

Li H, Lindquist JL, Yang Y. 2015. Effects of sowing date on phenotypic plascticity of fitness-related traits in two annual weeds on the Songnen Plain of China. PLoS ONE [Internet]. [cited 2023 Mar 18]; 10(5), Available from: doi: 10.1371/ journal.pone.0127795 DOI: https://doi.org/10.1371/journal.pone.0127795

Little, NG, DiTommaso A, Westbrook AS, Ketterings QM, Mohler CL. 2021. Effects of fertility amendments on weed growth and weed-crop competition: a review. Weed Sci 69: 132-46. DOI: https://doi.org/10.1017/wsc.2021.1

MacLaren C, Storkey J, Menegat A, Metcalfe H, Dehnen-Schmutz K. 2020. An ecological future for weed science to sustain crop production and the environment. A review. Agron Sustain Dev [Internet]. [cited 2023 Mar 22]; 40(24). doi: 10.1007/s13593-020-00631-6 DOI: https://doi.org/10.1007/s13593-020-00631-6

Martínez-Núñez M, Ruiz-Rivas M, Vera-Hernández PF, Bernal-Muñoz R, Luna-Suárez S, Rosas-Cárdenas FF, 2019. The phenological growth stages of different amaranth species grown in restricted spaces based in BBCH code. S Afr J Bot [Internet]. [cited 2023 Mar 22]; 124:436-43. doi: 10.1016/ j.sajb.2019.05.035 DOI: https://doi.org/10.1016/j.sajb.2019.05.035

Matt D, Pehme S, Peetsmann E, Luik A, Meremäe K. 2013. Pesticide residues in Estonian local and imported food in 2008-2011. Acta Agric Scand B Soil Plant Sci 63(1): 78-84. doi: 10.1080/09064710.2013.793383 DOI: https://doi.org/10.1080/09064710.2013.793383

Orke E-C. 2006. Crop losses to pests. J Agric Sci [Internet]. [cited 2023 Mar 23];144(1): 31-43. doi: 10.1017/S0021859605005708 DOI: https://doi.org/10.1017/S0021859605005708

POWO [Internet]. 2022. Plants of the world online. Facilitated by the Royal Botanic Gardens, Kew. [cited 2023 Mar 20] Available from: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:316349-2#distribution-map

Sun JT, Pan LL, Zhan U, Tsang DCW, Zhu LZ, Li XD. 2017. Atrazine contamination in agricultural soils from the Yangtze River Delta of China and associated health risks. Environ Geochem Health 39(2): 369-78. doi: 10.1007/s10653-016-9853-x DOI: https://doi.org/10.1007/s10653-016-9853-x

Terlau W, Hirsch D, Blanke M. 2019. Smallholder farmers as a backbone for the implementation of the Sustainable Development Goals. Sustain Dev 27: 523-9. doi: 10.1002/ sd.1907 DOI: https://doi.org/10.1002/sd.1907

Timmons FI. 2005. A history of weed control in the United States and Canada. Weed Sci 53: 748-61. doi: 10.1017/S0043174500079807 DOI: https://doi.org/10.1614/0043-1745(2005)053[0748:AHOWCI]2.0.CO;2

Tong PS, Lim, TM. 2022. Weed composition and maize yield in a former tin-mining area: a case study in Malim Nawar, Malaysia. Open Agric [Internet]. [cited 2023 Mar 20]; 7: 478-85. doi: 10.1515/opag-2022-0117 DOI: https://doi.org/10.1515/opag-2022-0117

Vilà M, Beaury EM, Blumenthal DM, Bradley BA, Early R, Laginhas BB, Trillo A, Dukes JS, Sorte CJB, Ibáñez I. 2021. Understanding the combined impacts of weeds and climate change on crops. Environ Res Lett [Internet]. [cited 2023 Mar 20]; 16. doi: 10.1088/1748-9326/abe14b DOI: https://doi.org/10.1088/1748-9326/abe14b

Ward SM, Cousens RD, Bagavathiannan MV, Barney JN, Beckie HJ, Busi R, Davis AS, Dukes JS, Forcella F, Freckleton RP, Gallandt ER, Hall LM, Jasieniuk M, Lawton-Rauh A, Lehnhoff EA, Liebmann M, Maxwell BD, Mesgaran MB, Murray JV, Neve P, Nunez MA, Pauchard A, Queenborough SA, Webber BL. 2014. Agricultural weed research: a critique and two proposals. Weed Sci 62: 672-8. DOI: https://doi.org/10.1614/WS-D-13-00161.1

Yaduraju NT, Rao AN. 2013. Implications of weeds and weed management on food security and safety in the Asia-Pacific region. In: Bakar B, Kurniadie D, Tjitrosoedirdjo S, editors. 24th Proceedings: 2013 Oct 22-25; Bandung, Indonesia, Bandung, Indonesia: Weed Society of Indonesia & Padjadjaran University. p.13-30.

Downloads

Published

2024-04-18

How to Cite

Tong, P. S., Ning Chew, K., Yin Yik, H., & Zhe Tan, J. (2024). RESPONSE OF Amaranthus viridis PLANT FUNCTIONAL TRAITS TO NPK 12:12:17 AND NPK 15:15:15 FERTILIZERS. BIOTROPIA, 31(1), 34–43. https://doi.org/10.11598/btb.2024.31.1.2020