INDIGENOUS BACILLUS SPECIES ISOLATED FROM AEDES AEGYPTI LARVAE: ISOLATION, LARVICIDAL TOXICITY SCREENING, PHENOTYPIC CHARACTERIZATION, AND MOLECULAR IDENTIFICATION

Main Article Content

Salamun
Rizky Danang Susetyo
Hakimatul Husniyah
Almando Geraldi
Ni’matuzahroh
Fatimah
Farah Aisyah Nafidiastri
Nabilatun Nisa’
Muhammad Fath Alhaqqi Sanis Salamy

Abstract

Vector-borne diseases transmitted by mosquitoes are considered a significant public health problem worldwide. Aedes aegypti is one of the mosquito species responsible for transmitting these diseases. One environmentally friendly method of vector control is the use of microbial agents such as Bacillus species. This study aimed to explore investigate indigenous entomopathogenic bacteria of Bacillus species isolated from A. aegypti larvae. Larvae samples were collected from breeding sites of A. aegypti. All isolates underwent screening and affirmation confirmation tests to assess their larvicidal toxicity against A. aegypti larvae. Phenotypic characterizations and molecular identifications were conducted to determine the species of the Bacillus isolates based on similarity index and percent identity (%ID). Phylogenetic trees were used to compare the isolates with other Bacillus species. The results revealed 120 isolates of Bacillus species from A. aegypti larvae samples. Among them, three isolates (LS3.3, LS9.1, and LSD4.2) exhibited the highest larvicidal toxicity in the confirmation test, resulting in larval mortality rates of 100%, 96.7%, and 100%, respectively, after 48 hours of exposure. Molecular identifications, showed that LSD4.2 had a 99.16% ID with Bacillus velezensis, LS3.3 had a 98.22% ID with Bacillus mojavensis, and LS9.1 had a 99.93% ID with Bacillus subtilis. These three bacteria from the Bacillus genus have been reported to offer significant benefits to humans.

Downloads

Download data is not yet available.

Article Details

How to Cite
Salamun, Rizky Danang Susetyo, Hakimatul Husniyah, Almando Geraldi, Ni’matuzahroh, Fatimah, Farah Aisyah Nafidiastri, Nabilatun Nisa’, & Salamy, M. F. A. S. (2023). INDIGENOUS BACILLUS SPECIES ISOLATED FROM AEDES AEGYPTI LARVAE: ISOLATION, LARVICIDAL TOXICITY SCREENING, PHENOTYPIC CHARACTERIZATION, AND MOLECULAR IDENTIFICATION. BIOTROPIA, 30(2), 242–252. https://doi.org/10.11598/btb.2023.30.2.1938
Section
Research Paper

References

Adeniji AA, Loots DT, Babalola OO. 2019. Bacillus velezensis: Phylogeni, useful applications, and avenues for exploitation. Appl Microb Biotech 103: 3669-82. DOI: https://doi.org/10.1007/s00253-019-09710-5

Aynalem B. 2022. Empirical review of Tuta absoluta meyrick effect on the tomato production and their protection attempts. Advances in Agriculture 2595470. DOI: https://doi.org/10.1155/2022/2595470

Bacon CW, Hinton DM. 2002. Endophytic and biological control potential of Bacillus mojavensis and related species. Biological Control 23: 274-84. DOI: https://doi.org/10.1006/bcon.2001.1016

Bar A, Andrew J. 2013. Morphology and Morphometry of Aedes aegypti Larvae. Annual Review & Research in Biology 3(1): 1-21.

Benelli G, Jeffries CL, Walker T. 2016. Biological Control of mosquito vectors: Past, present, and future. Insects 7(52): 1-18. DOI: https://doi.org/10.3390/insects7040052

Berekaa MM, Ezzeldin MF. 2018. Exopolysaccharide from Bacillus mojavensis DAS10-1: production and characterization mahmoud. Journal of Pure and Applied Microbiology 12(2): 633-40. DOI: https://doi.org/10.22207/JPAM.12.2.21

Blacutt AA, Mitchell TR, Bacon CW, Gold SE. 2016. Bacillus mojavensis RRC101 lipopeptides provoke physiological and metabolic changes during antagonism against Fusarium verticillioides. MPMI 29(9): 713-23. DOI: https://doi.org/10.1094/MPMI-05-16-0093-R

Boyce R, Lenhart A, Kroeger A, Velayudhan R, Roberts B, Horstick O. 2013. Bacillus thuringiensis israelensis for the control of dengue vectors: systematic literature review. Trop Med Int Health 18(5): 564-77. DOI: https://doi.org/10.1111/tmi.12087

Dahmana H, Mediannikov O. 2020. Mosquito-borne diseases emergence/resurgence and how to effectively control it biologically. Pathogens 9(310): 1-26. DOI: https://doi.org/10.3390/pathogens9040310

Dawwam GE, Sehim AE. 2022. Promising biological agents represented in Bacillus velezensis 33RB and Aspergillus niger 46SF endophytic isolates for controlling Populus tomentosa wilt and anthracnose diseases. Egypt J Biol Pest Control 3: 144. DOI: https://doi.org/10.1186/s41938-022-00644-1

Diabankana RGC, Afordoanyi DM, Safin RI, Nizamov RM, Karimova LZ, Validov SZ. 2021. Antifungal properties, abiotic stress resistance, and biocontrol ability of Bacillus mojavensis PS17. Curr Microbiol 78(8): 3124-32. DOI: https://doi.org/10.1007/s00284-021-02578-7

Dunlap CA, Bowman MJ, Zeigler DR. 2019. Promotion of Bacillus subtilis subsp. inaquosorum, Bacillus subtilis subsp. spizizenii and Bacillus subtilis subsp. stercoris to species status. Antonie Van Leeuwenhoek 113(1): 1-12. DOI: https://doi.org/10.1007/s10482-019-01354-9

El-Kersh TA, Ashraf MA, Yazeed A, Al-Sheikh, Frédéric Tripet, Ibrahim MA, Ali A, Metwalli M. 2016. Isolation and characterization of native Bacillus thuringiensis strains from Saudi Arabia with enhanced larvicidal toxicity against the mosquito vector Anopheles gambiae. Parasites & Vector 9: 1-14. DOI: https://doi.org/10.1186/s13071-016-1922-6

Evdokimov AG, Moshiri F, Sturman EJ, Rydel TJ, Zheng M, Seale JW, Franklin S. 2014. Structure of the full-length insecticidal protein Cry1Ac reveals intriguing details of toxin packaging into in vivo formed crystals. Protein Science 23: 1491-1497. DOI: https://doi.org/10.1002/pro.2536

Fanaei M, Jurcic K, & Emtiazi G. 2021. Detection of simultaneous production of kurstakin, fengycin and surfactin lipopeptides in Bacillus mojavensis using a novel gel-based method and MALDI-TOF spectrometry. World journal of microbiology & biotechnology 37(6), 97. DOI: https://doi.org/10.1007/s11274-021-03064-9

Fayad N, Patiño-Navarrete R, Kambris Z, Osta, M, Chopineau J, Mahillon J, Chamy LE, Sanchis V, Awad MK. 2019. Characterization and whole genome sequencing of AR23, a highly toxic Bacillus thuringiensis strain isolated from Lebanese soil. Curr Microbiol 76: 1503-11. DOI: https://doi.org/10.1007/s00284-019-01775-9

Gama ZP, Yanuwiadi B, Kurniati TH. 2010. Strategi pemberantasan nyamuk aman lingkungan: Potensi Bacillus thuringiensis isolat Madura sebagai musuh alami nyamuk Aedes aegypti (Environmentally safe mosquito eradication strategy: Potential of Bacillus thuringiensis Madura isolate as natural enemy of Aedes aegypti mosquito). Jurnal Pembangunan dan Alam Lestari 1(1): 1-10.

Hmidet N, Ayed HB, Jacques P, Nasri M. 2017. Enhancement of surfactin and fengycin production by Bacillus mojavensis A21: application for diesel biodegradation. Hindawi BioMed Research International 5893123: 1-8. DOI: https://doi.org/10.1155/2017/5893123

Iqtedar M, Aslam M., Akhyar M, Shehzaad A,, Abdullah R, Kaleem A . 2019. Extracellular biosynthesis, characterization, optimization of silver nanoparticles (AgNPs) using Bacillus mojavensis BTCB15 and its antimicrobial activity against multidrug resistant pathogens. Prep Biochem Biotechnol 49(2): 136-42. DOI: https://doi.org/10.1080/10826068.2018.1550654

Jasim B, Sreelakshmi S, Mathew J, Radhakrishnan EK. 2016. Identification of endophytic Bacillus mojavensis with highly specialised broad spectrum antibacterial activity. Biotech (6)187: 1-10. DOI: https://doi.org/10.1007/s13205-016-0508-5

Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen L, Leopold SR, Hanson BM, Agresta HO, Gerstein M, Sodergren E, Weinstock GM. 2019. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun 10, 5029. DOI: https://doi.org/10.1038/s41467-019-13036-1

Kim IH, Ensign J, Kim DY, Jung HY, Kim NR, Choi BH, Park SM, Lan Q, Goodman, WG. 2017. Specificity and putative mode of action of a mosquito larvicidal toxin from the bacterium Xenorhabdus innexi. Journal of Invertebrate Pathology 149: 21-8. DOI: https://doi.org/10.1016/j.jip.2017.07.002

Kumar A, Kumar H, Manonmani AM, Prabakaran G, Vijayakumar B, Mathivanan A, Geetha I, Jambulingam P. 2022. Field evaluation of biosurfactants, surfactin and di-rhamnolipid produced by Bacillus subtilis subsp. subtilis (VCRC B471) and Pseudomonas fluorescens (VCRC B426) against immature stages of the urban malaria vector Anopheles stephensi. J Vector Borne Dis 59: 246-52. DOI: https://doi.org/10.4103/0972-9062.342401

Kumar P, Kamle M, Borah R, Mahato, DK, Sharma B. 2021. Bacillus thuringiensis as microbial biopesticide: uses and application for sustainable agriculture. Egypt J Biol Pest Control 31: 95. DOI: https://doi.org/10.1186/s41938-021-00440-3

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33: 1870-1874. DOI: https://doi.org/10.1093/molbev/msw054

Mani C, Selvakumari J, Han Y, Jo Y, Thirugnanasambantham K, Sundarapandian S, Poopathi S. 2017. Molecular characterization of mosquitocidal toxin (surface layer protein, SLP) from Bacillus cereus VCRC B540. Appl Biochem Biotech 184(4): 1094-105. DOI: https://doi.org/10.1007/s12010-017-2602-5

Melanie, Rustama MM, Sihotang IS, Kasmara H. 2018. Effectiveness of storage time formulation of Bacillus thuringiensis against Aedes aegypti larvae (Linnaeus). Cropsaver 1(1): 48-52. DOI: https://doi.org/10.24198/cropsaver.v1i1.16999

Mora I, Cabrefiga J, Montesinos E. 2015. Cyclic Lipopeptide biosynthetic genes and products, and inhibitory activity of plant-associated Bacillus against phytopathogenic bacteria. PLoS ONE 10(5): e0127738. DOI: https://doi.org/10.1371/journal.pone.0127738

Mounia YA, Chaouche NK, Dehimat L, Bataiche I, Ali KH, Cawoy H, Thonart P. 2014. Antifungal activity and bioactive compounds produced by Bacillus mojavensis and Bacillus subtilis. Afr J Microb Res 8(6): 476-84. DOI: https://doi.org/10.5897/AJMR2013.6327

Myo EM, Liu B, Ma J, Shi L, Jiang M, Zhang K, Ge B. 2019. Evaluation of Bacillus velezensis NKG-2 for bio-control activities against fungal diseases and potential plant growth promotion. Biol Control 134: 23-31. DOI: https://doi.org/10.1016/j.biocontrol.2019.03.017

Paul A. 2007. Soil Microbiology, Ecology, and Biochemistry. Academic Press, Elsevier Inc. Burlington, USA DOI: https://doi.org/10.1016/B978-0-08-047514-1.50005-6

Paul DV, Garrity MG, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K, Withman BW. 2009. Bergey’s manual of systematic bacteriology vol. 3 ed. 2, New York: Springer Science-Business Media.

Polenogova O, Noskov Y, Artemchenko A, Zhangissina S, Tatyana K, Yaroslavtseva O, Khodyrev V, Kruykova N, Glupov V. 2022. Сitrobacter freundii, a natural associate of the Colorado potato beetle, increases larval susceptibility to Bacillus thuringiensis. Pest Management Science 78. DOI: https://doi.org/10.1002/ps.6856

Poopathi S, Abidha S. 2013. Mosquitocidal bacterial toxins (Bacillus sphaericus and Bacillus thuringiensis serovar israelensis): mode of action, cytopathological effects and mechanism of resistance. Journal of Physiology and Pathophysiology 1(3): 22-38.

Pratiwi EK, Samino S, Gama ZP, Nakagoshi N. 2013. Uji toksisitas Bacillus thuringiensis asal kota Nganjuk terhadap larva Aedes aegypti (Toxicity assay of Bacillus thuringiensis from Nganjuk City against Aedes aegypti larvae). Jurnal Biotropika 1 (4): 171-76.

Sachdev DP, Cameotra SS. 2013. Biosurfactants in agriculture. Appl Microbiol Biotechnol 97(3): 1005-16. DOI: https://doi.org/10.1007/s00253-012-4641-8

Salamun, Fatimah, Fauzi A, Praduwana SN, Ni’matuzahroh. 2021. Larvicidal toxicity and parasporal inclusion of native Bacillus thuringiensis BK5.2 against Aedes aegypti. J Basic Clin Physiol Pharmacol 32(4): 379–84. DOI: https://doi.org/10.1515/jbcpp-2020-0472

Schünemann R, Knaak N, Fiuza LM. 2014. Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. Microbiology 1-12. DOI: https://doi.org/10.1155/2014/135675

Su Y, Liu Ch, Fang H, Zhang D. 2020. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Fact DOI: https://doi.org/10.1186/s12934-020-01436-8

: 173.

Suryadi BF, Yanuwiadi B, Ardyati T, Suharjono. 2016. Evaluation of entomopathogenic Bacillus sphaericus isolated from Lombok Beach Area against mosquito larvae. Asian Pac J Trop Biomed 6(2): 148-54. DOI: https://doi.org/10.1016/j.apjtb.2015.10.013

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725-29. DOI: https://doi.org/10.1093/molbev/mst197

Thomas MB. 2018. Biological control of human disease vectors: a perspective on challenges and opportunities. BioControl 63: 61-9. DOI: https://doi.org/10.1007/s10526-017-9815-y

Wilson JJ, Lakshmi MP, Sivakumar T, Ponmanickam P, Sevarkodiyone SP. 2022. Green synthesis of silver nanoparticles using Bacillus subtilis (P3) and its larvicidal, histopathological and biotoxicity efficacy. South African Journal of Botany 151(B): 309-18. DOI: https://doi.org/10.1016/j.sajb.2022.02.033

Zeigler DR, Perkins JB. 2015. The Genus Bacillus. CRC Press. Taylor and Franciss Goup. New York. DOI: https://doi.org/10.1201/b17871-30

Zhang DF, Xiong XL, Wang YJ, Gao YX, Ren Y, Wang Q, Shi CB. 2021. Bacillus velezensis WLYS23 strain possesses antagonistic activity against hybrid snakehead bacterial pathogens. J Appl Microb 131(6): 3056-68. DOI: https://doi.org/10.1111/jam.15162

Zhao P, Quan C, Wang Y, Wang J, Fan S. 2014. Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae. J Bas Microbiol 54: 448-56. DOI: https://doi.org/10.1002/jobm.201200414