PRODUCTION OPTIMIZATION, PARTIAL PURIFICATION, AND THROMBOLYTIC ACTIVITY EVALUATION OF PROTEASE OF Bacillus cereus HSFI-10

Authors

  • Ainutajriani Ainutajriani Magister of Clinical Laboratory Science, Postgraduate Program, Universitas Muhammadiyah Semarang, Central Java, 50273, Indonesia
  • Sri Darmawati Magister of Clinical Laboratory Science, Postgraduate Program, Universitas Muhammadiyah Semarang, Central Java, 50273, Indonesia
  • Dewi Seswita Zilda Research Center for Deep Sea, Earth Sciences and Maritime Research Organization, National Research and Innovation Agency (BRIN), Jl. Pasir Putih Raya Pademangan, North Jakarta City, Jakarta, 14430, Indonesia
  • Muhammad Ardi Afriansyah Department of Medical Laboratory Technology, Faculty of Nursing and Health Sciences, Universitas Muhammadiyah Semarang, Central Java, 50273, Indonesia
  • Ragil Saptaningtyas Department of Medical Laboratory Technology, Faculty of Nursing and Health Sciences, Universitas Muhammadiyah Semarang, Central Java, 50273, Indonesia
  • Stalis Norma Ethica Magister of Clinical Laboratory Science, Postgraduate Program, Universitas Muhammadiyah Semarang, Central Java, 50273, Indonesia

DOI:

https://doi.org/10.11598/btb.2023.30.2.1765

Keywords:

Bacillus cereus HSFI-10, blood system, clot lysis, partial purification, thrombosis

Abstract

Cardiovascular disease is the primary cause of mortality in the world due to the formation of blood clots or thrombi in blood vessels. Bacterial proteases commonly function as thrombus dissolver agents in the pharmaceutical industry. Bacterial isolate HSFI-10 (Holothuria scabra Fermented Intestine-10) previously isolated from Rusip fermented sea cucumber had demonstrated thrombolytic activity. This study aimed to produce crude protease of HSFI-10 strain at an optimized incubation time and determine the thrombolytic activity of crude and dialysate proteases on A, B, AB, and O blood types. Isolate HSFI-10 was first molecularly identified and found to be Bacillus cereus with a homology level of 99.80% with Bacillus cereus strain ST06. The optimum crude enzyme was obtained after 48-h incubation with an activity of 222.52 U/mL, which increased to 438.84 U/mL after ammonium sulfate precipitation and dialysis. Clot lysis activity of crude enzymes was measured based on the gravimetry method on blood in the ABO system, showing results that ranged from 68.99% to 69.76%, while the dialysate ranged from 81.16% to 82.52%. In conclusion, partial purification of bacterial protease could increase both its specific and thrombolytic activities on human blood in the ABO system, with only 1% activity variability between A, B, AB, and O blood types.

Downloads

Download data is not yet available.

References

Abbas, N., Siddique, H.N., Masood, F., Shehzadi, A., Abbas, Z. and Ali, S., 2020. Production of protease enzyme from Bacillus subtilis using skimmed milk. Science International (Lahore), 32(2), pp.211-214. https://inis.iaea.org/search/search.aspx?orig_q=RN:51088719

Ahmadpour F, Yakhchali B. Development of an Asporogenic Bacillus cereus Strain to Improve keratinase production in exponential phase by switching sigmaH on and sigmaF off, 2017. FEMS Microbiology Letters, Volume 364, Issue 24, fnx216, https://doi.org/10.1093/femsle/fnx216

Artha, O.A., Pramono, H. and Sari, L.A., 2019, February. Identification of extracellular enzyme-producing bacteria (proteolytic, cellulolytic, and amylolytic) in the sediment of extensive ponds in Tanggulrejo, Gresik. In IOP Conference Series: Earth and Environmental Science (Vol. 236, No. 1, p. 012003). IOP Publishing. https://iopscience.iop.org/article/10.1088/1755-1315/236/1/012003

Assaf DD, Kenan E, Sionov R, Steinberg D, Shemesh M. Proteolytic Activity of Bacillus subtilis upon κ-Casein Undermines Its “Caries-Safe” Effect. Microorganisms. 2020; 8(2):221. https://doi.org/10.3390/microorganisms8020221

Battinelli, E.M., Leopold, J.A. and Loscalzo, J., 2019. Pathobiology of Thrombosis. Vascular Medicine: A Companion to Braunwald's Heart Disease E-Book, p.120.

Bergmeyer, H.U., GraB, M. and Walter, H.E., 1983. Alcohol oxidase. In Methods of enzymatic analysis, vol 2 (pp. 143-144). Weinheim: Verlag Chemie. https://www.sciencedirect.com/book/9780120913022/methods-of-enzymatic-analysis

Bottone EJ. Bacillus cereus a volatile human pathogen. Clinical microbiology reviews. 2010 Apr; 23(2): 382-98. https://doi.org/10.1128/cmr.00073-09

Chen H, Chen J, Zhang F, Li Y, Wang R, Zheng Q, Zhang X, Zeng J, Xu F, Lin Y. Effective management of atherosclerosis progress and hyperlipidemia with nattokinase: A clinical study with 1,062 participants. Front Cardiovasc Med. 2022 Aug 22;9:964977. Erratum in: Front Cardiovasc Med. 2022 Dec 05;9:1076420. PMID: 36072877; PMCID: PMC9441630. https://doi.org/10.3389/fcvm.2022.964977

Darmawati, S., 2015. Identification of Staphylococcus sp. strains isolated from positive widal blood based on 16s rRNA gene sequences. International Journal of Science and Engineering, 9(2), pp.97-100. https://doi.org/10.12777/ijse.9.2.97-100

Dewi OY, Ethica SN, Sukeksi A, Rakhmawatie MD, Darmawati S. Prospective In Vivo Assays on the Antithrombotic Potential of Protease Extracted from Bacillus sp. HSFI-12. In 7th International Conference on Biological Science (ICBS 2021) 2022 May 2 (pp. 394-403). Atlantis Press. https://doi.org/10.2991/absr.k.220406.056

Durachim A dan Astuti D. Hemostasis. Kemenkes RI, Jakarta. 2018. http://bppsdmk.kemkes.go.id/ pusdiksdmk/wp-content/uploads/2018/09/ Hemostasis_SC.pdf

Ethica, S.N., Oedjijono, O., Semiarti, E., Widada, J. and Raharjo, T.J., 2018. Genotypic and phenotypic characterization of Alcaligenes javaensis JG3 potential as an effective biodegrader. BIOTROPIA-The Southeast Asian Journal of Tropical Biology, 25(1), pp.1-10. https://doi.org/10.11598/btb.2018.25.1.583

Farooq, S., Nazir, R., Ganai, S.A. and Ganai, B.A., 2021. Isolation and characterization of a new cold-active protease from psychrotrophic bacteria of Western Himalayan glacial soil. Scientific reports, 11(1), pp.1-14. https://doi.org/10.1007/s11756-021-00915-6

Fuad, H., Hidayati, N., Darmawati, S., Munandar, H., Sulistyaningtyas, A.R., Nurrahman, N., Ernanto, A.R., Zilda, D.S., Widjanarka, W. and Ethica, S.N., 2020. Prospects of fibrinolytic proteases of bacteria from sea cucumber fermentation products as antithrombotic agent. In BIO Web of Conferences (Vol. 28, p. 02006). EDP Sciences. https://doi.org/10.1051/bioconf/20202802006

Gallelli G, Di Mizio G, Palleria C, Siniscalchi A, Rubino P, Muraca L, Cione E, Salerno M, De Sarro G, Gallelli L. Data Recorded in Real Life Support the Safety of Nattokinase in Patients with Vascular Diseases. Nutrients. 2021 Jun 13;13(6):2031. PMID: 34199189; PMCID: PMC8231931. https://doi.org/10.3390/nu13062031

Geneser, F., 1994. Buku teks histologi. Jilid I. Binapura Aksara. Jakarta. https://lib.ui.ac.id/ detail.jsp?id=140493

Green, M.R. and Sambrook, J., 2021. Cloning polymerase chain reaction (PCR) products: Blunt-end cloning. Cold Spring Harbor Protocols, 2021(4), pp.pdb-prot101287. https://doi.org/10.1101/ pdb.prot101287

Gupta N. DNA extraction and polymerase chain reaction. Journal of cytology. 2019 Apr 1; 36(2).

Hall, T., 2004. BioEdit version 7.0. 0. Distributed by the author, website: www.mbio.ncsu.edu/BioEdit/ bioedit.html

Hidayati, N., Fuad, H., Munandar, H., Zilda, D.S., Nurrahman, N., Fattah, M., Oedjijono, O., Samiasih, A. and Ethica, S.N., 2021, April. Proteolytic and Clot Lysis Activity Screening of Crude Proteases Extracted from Tissues and Bacterial Isolates of Holothuria scabra. In IOP Conference Series: Earth and Environmental Science (Vol. 755, No. 1, p. 012016). IOP Publishing. http://dx.doi.org/10.1088/1755-1315/755/1/012016

Holle LA, Monroe DM, Wolberg AS. VWF (von Willebrand Factor) is not required for red blood cell retention in clots in mice. Arteriosclerosis, Thrombosis, and Vascular Biology. 2020 Aug;40(8):1952-4. https://doi.org/10.1161/ ATVBAHA. 120.314575

Krishnamurthy, A., Belur, P.D. and Subramanya, S.B., 2018. Methods available to assess therapeutic potential of fibrinolytic enzymes of microbial origin: a review. Journal of Analytical Science and Technology, 9(1), pp.1-11. https://doi.org/ 10.5958/0974-360X.2020.00730.1

Lu Z, Guo W, Liu C. Isolation, identification and characterization of novel Bacillus subtilis. J Vet Med Sci. 2018 Mar 24;80(3):427-433. Epub 2018 Jan 23. PMID: 29367516; PMCID: PMC5880821. https://doi:10.1292/jvms.16-0572

Martina, S.J., Ramar, L.A., Silaban, M.R., Luthfi, M. and Govindan, P.A., 2019. Anti-platelet effectivity between aspirin with honey on cardiovascular disease based on bleeding time taken on mice. Open Access Macedonian Journal of Medical Sciences, 7(20), p.3416. https://doi.org/10.3889/ oamjms.2019.431

Mehic, D., Hofer, S., Jungbauer, C., Kaider, A., Haslacher, H., Eigenbauer, E., Rejtő, J., Schwartz, D., Jilma, B., Ay, C. and Pabinger, I., 2020. Association of ABO blood group with bleeding severity in patients with bleeding of unknown cause. Blood advances, 4(20), pp.5157-5164. https://dx.doi.org/ 10.1182%2Fbloodadvances.2020002452

Mogrovejo, D.C., Perini, L., Gostinčar, C., Sepčić, K., Turk, M., Ambrožič-Avguštin, J., Brill, F.H. and Gunde-Cimerman, N., 2020. Prevalence of antimicrobial resistance and hemolytic phenotypes in culturable arctic bacteria. Frontiers in microbiology, 11, p.570. https://doi.org/10.3389/ fmicb.2020.00570

Mohamed ABO, Al-Ama N, Al Kreathy H, et al. Oral Contraceptive Types in Relation to ABO Blood Groups Among Saudi Women of Different Reproductive Age Groups and Impact on Venous Thromboembolism. Clinical and Applied Thrombosis/Hemostasis. January 2020. https://doi:10.1177/1076029620966051

Mukherjee, S., 2019. Isolation and purification of industrial enzymes: advances in enzyme technology. In Advances in Enzyme Technology (pp. 41-70). Elsevier. https://doi.org/10.1016/ b978-0-444-64114-4.00002-9

Natsir, H., 2015. Production of protease enzyme from bacteria in hot spring of South Sulawesi, Bacillus licheniformis Hsa3-1a. Marina Chimica Acta, 16(1). https://doi.org/10.20956/mca.v16i1.949

Pagarra H, Hartati H, Ali A, Salempa P, Muharram M. Isolation and Optimization of Endophytic Bacteria from Roots of Karst Area Ecosystems Producing Protease Enzymes. The Journal of Research on the Lepidoptera. 2020;51(2):431-9. https://doi.org/ 10.36872/LEPI/V51I2/301110

Pagarra H, Hartati H, Ali A, Salempa P, Muharram M. Isolation and Optimization of Endophytic Bacteria from Roots of Karst Area Ecosystems Producing Protease Enzymes. The Journal of Research on the Lepidoptera. 2020;51(2):431-9. https://doi.org/ 10.36872/LEPI/V51I2/301110

Pendu JL, Breiman A, Rocher J, Dion M, Ruvoën-Clouet N. ABO blood types and COVID-19: spurious, anecdotal, or truly important relationships? A reasoned review of available data. Viruses 2021, Feb;13(2):160. https://doi.org/10.3390/ v13020160

Prasad, S., R.S. Kashyap, J.Y. Deopujari, H.J. Purohit, G.M. Taori, and H.F. Daginawala. 2006. ‗Development of an in vitro model to study clot lysis activity of thrombolytic drugs', BioMed Central, 4, pp. 9–12. https://doi.org/10.1186/ 1477-9560-4-14

Razzaq, A., Shamsi, S., Ali, A., Ali, Q., Sajjad, M., Malik, A. and Ashraf, M., 2019. Microbial proteases applications. Frontiers in bioengineering and biotechnology, 7, p.110. https://doi.org/10.3389/fbioe.2019.00110

Sambrook, J., 1989. Molecular cloning: a laboratory manual. Synthetic oligonucleotides. https://www.cabdirect.org/cabdirect/abstract/19901616061

Saxena, V., Gacchina Johnson, C., Negussie, A.H., Sharma, K.V., Dreher, M.R. and Wood, B.J., 2015. Temperature-sensitive liposome-mediated delivery of thrombolytic agents. International Journal of Hyperthermia, 31(1), pp.67-73. https://doi.org/10.5853/jos.2020.03349

Scheres, L.J., Lijfering, W.M. and Cannegieter, S.C., 2018. Current and future burden of venous thrombosis: not simply predictable. Research and practice in thrombosis and haemostasis, 2(2), pp.199-208. https://dx.doi.org/10.1002%2Frth2.12101

Separham, A., Dinparvar, S., Savadi-Oskouei, S., Pourafkari, L., Baghbani-Oskouei, A. and Nader, N.D., 2020. Association of ABO blood types with ST resolution following thrombolysis in acute ST elevation myocardial infarction. Journal of Cardiovascular and Thoracic Research, 12(2), p.106. https://dx.doi.org/10.34172%2Fjcvtr.2020.18

Shahi, S., Vahed, S.Z., Fathi, N. and Sharifi, S., 2018. Polymerase chain reaction (PCR)-based methods: promising molecular tools in dentistry. International journal of biological macromolecules, 117, pp.983-992. https://doi.org/10.1016/ j.ijbiomac.2018.05.085

Sharma, C., Salem, G.E.M., Sharma, N., Gautam, P. and Singh, R., 2020. Thrombolytic potential of novel thiol-dependent fibrinolytic protease from Bacillus cereus RSA1. Biomolecules, 10(1), p.3. https://doi.org/10.3390/biom10010003

Si, J.B., Jang, E.J., Charalampopoulos, D. and Wee, Y.J., 2018. Purification and characterization of microbial protease produced extracellularly from Bacillus subtilis FBL-1. Biotechnology and Bioprocess Engineering, 23(2), pp.176-182. https://doi.org/10.1007/s12257-017-0495-3

Suleiman AD, Abdul Rahman N, Mohd Yusof H, Mohd Shariff F, Yasid NA. Effect of Cultural Conditions on Protease Production by a Thermophilic Geobacillus thermoglucosidasius SKF4 Isolated from Sungai Klah Hot Spring Park, Malaysia. Molecules. 2020 Jun 4;25(11):2609. PMID: 32512695; PMCID: PMC7321352. https://doi.org/10.3390/ molecules25112609

Westphal, A.H. and van Berkel, W.J., 2021. Techniques for Enzyme Purification. Biocatalysis for Practitioners: Techniques, Reactions and Applications, pp.1-31. https://application.wiley-vch.de/books/sample/352734683X_c01.pdf

World Health Organization (WHO). Cardiovascular diseases (CVDs): 2017. Accessed from https://www.who.int/en/news-room/factsheets/ detail/cardiovascular diseases(cvds)

Downloads

Published

2023-08-01

How to Cite

Ainutajriani, A., Darmawati, S., Zilda, D. S., Afriansyah, M. A., Saptaningtyas, R., & Ethica, S. N. (2023). PRODUCTION OPTIMIZATION, PARTIAL PURIFICATION, AND THROMBOLYTIC ACTIVITY EVALUATION OF PROTEASE OF Bacillus cereus HSFI-10. BIOTROPIA, 30(2), 147–157. https://doi.org/10.11598/btb.2023.30.2.1765

Most read articles by the same author(s)