Vol. 31 No. 2, 2024: 169 - 180 DOI: 10.11598/btb.2024.31.2.1874

Research Article

CONSERVATION STATUS OF TREE SPECIES OF THE FRESHWATER SWAMP FOREST, PERAK TENGAH, MALAYSIA

Liliwirianis Nawi^{1*}, Mohd Nazip Suratman², Farida Zuraina Mohd Yusof³, Abdul Latiff Mohamad⁴

¹Faculty of Applied Sciences, Universiti Teknologi MARA Pahang, Bandar Tun Abdul Razak Jengka 26400, Malaysia. ²Institute for Biodiversity and Sustainable Development, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Malaysia. ³Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Malaysia. ⁴Department of Biological Science and Biotechnology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia.

ARTICLE HIGLIGHTS

- Approximately 3,364 tree individuals with a diameter at breast height (dbh) of 10.0 cm and above were assessed in the Perak Tengah freshwater swamp forest.
- The study has recognised 58 species identified are new to Perak.
- 72 tree species are listed as endemic, and 194 species are listed in the Red List of Threatened Species by The International Union for Conservation of Nature (IUCN).
- This study mphasize the need to preserve ecology and mitigate threats.

Article Information

Received 25 January 2023 Revised 23 March 2024 Accepted 22 May 2024

*Corresponding author, e-mail: liliwirianis@uitm.edu.my

INTRODUCTION

Malaysia has lost a substantial amount of forest due to cash-crop plantations (oil palm, rubber, and acacia, including fallow lands) and urban expansion (Huang & Oey 2019). For the past 29 years, nearly 16% (189,423 ha) of Perak's forest cover has disappeared due to anthropogenic activities (Kanniah & Siong 2017; Jaafar *et al.* 2020). According to the Fifth National Report of the Convention on Biological Diversity (2020), over 80% of the larger genera are endemic. Most endemic species are vulnerable to extinction because they are only restricted to one area with a specific microclimate.

ABSTRACT

The forests of Peninsular Malaysia have long been recognized as a significant home of endemic species. The purpose of this study was to assess the endemism and conservation status of tree species present in the Perak Tengah freshwater swamp forest. A total of 150 plots ($20~\text{m} \times 20~\text{m}$) were established in the study area using a random sampling design. Approximately 3,364 tree individuals with diameter at breast height (dbh) of 10.0 cm and above were enumerated in all plots. In the study area, 58 species identified are new to Perak, 72 tree species are listed as endemic, and 194 species are listed in the Red List of Threatened Species by IUCN. Thus, it is crucial to preserve the ecology and lessen the impact of threats in the Perak Tengah freshwater swamp forest, which is home to numerous endemic and endangered species.

Keywords:

endangered, endemic, freshwater swamp forest, malaysia, perak, threatened

Malaysia is estimated to possess 15,000 species of flora, with 8,300 species found in Peninsular Malaysia. There are currently at least 9,030 vascular plant taxa in Peninsular Malaysia, made up of 1,651 genera and 248 families, with at least 149 new taxa identified since 2005 (Yong *et al.* 2021). Malaysia has also recorded approximately 2,500 species of endemic vascular plants (Saw & Chung 2015).

Rare species are becoming the most significant concern for conservationists due to the risk of extinction. Species can be considered rare when they have small population sizes, restricted geographical ranges, or narrow habitat tolerances. When combined, these characteristics define several forms of rarity and different levels of extinction risk (Kruckeberg & Rabinowitz 1985).

Rare species have greater sensitivity to both natural- and human-induced disturbances, such as overexploitation, habitat loss, and global environmental changes (Davies et al. 2004). Meanwhile, from the ecological aspect, endemism refers to the occurrence of any taxonomic entity (species, genus, or family) within a restricted and entirely defined area. Endemism is essential to ecologists, biogeographers, and evolutionary biologists in general. Endemics can be old (palaeoendemics) or new (neoendemics). Endemic species are an important target of global conservation efforts. As for species richness, a smaller amount of total area will need to be conserved if endemism patterns among taxa are correlated. Generally, the number of taxa endemic to a particular area increases with size and geographic isolation (Anderson 1994).

Extinction will result in ecological loss and disturbance to the equilibrium of the forest. A better understanding of the rarity types and their differences needs to be considered for better conservation planning and strategies. Thus, the establishment of the International Union for Conservation of Nature (IUCN) aims to influence, encourage, and assist societies to conserve diversity and to ensure that any use of natural resources is equitable and ecologically sustainable.

The study aimed to assess the endemism and conservation status of species found in the Perak Tengah freshwater swamp forest. Due to the ecology and drainage, freshwater swamp forests are particularly vulnerable to outside influences.

Although endemic species are not necessarily rare or threatened by extinction, species typically become rare before going extinct (Kruckeberg & Rabinowitz 1985; Dobson *et al.* 1995). Endemic species, especially those with narrow distributions, as in this freshwater swamp forest, are particularly vulnerable to extinction resulting from habitat disturbance and other threats (Kiew *et al.* 2017; Kiew & Rahman 2021).

MATERIALS AND METHODS

Study Area

The study area was located at the freshwater swamp forest remnant located in the District of Perak Tengah, Bandar Sri Iskandar. The area of Perak Tengah District is about 12,205 ha and comprises 11 subdistricts. The study areas were located at the Universiti Teknologi MARA (UiTM) Perak Sri Iskandar Forest (4°21'31.1" N; 100°57'12.7" E), Universiti Teknologi Petronas (UTP) Tronoh Forest (4°22'49.9" N; 100°57'44.8" E), and the Parit Forest Reserve, Parit (4°24'13.9" N; 100°56'03.7" E), as shown in Figure 1. The forest is surrounded by secondary forests with urban development leaving isolated freshwater swamp forest areas. Freshwater swamp forest is a unique habitat that occurs in permanently flooded soil. The forest comprises stilt roots, knee roots, and plank-like sinuous buttresses, which are common features of tree species found in freshwater swamp forests. The mean monthly temperatures for the study area ranged from 26.5 °C to 28.7 °C with an annual rainfall of 245.6 cm.

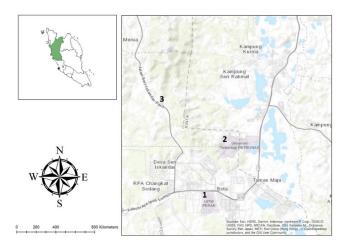


Figure 1 Map of study area at Perak Tengah, Perak Notes: (1) UiTM Perak, Sri Iskandar Forest; (2) UTP, Tronoh Forest; and (3) Parit Forest Reserve, Parit.

Data Collection

The study plots were established using random sampling from May 2011 to April 2015. A total of 150 plots of 20 × 20 m each were established in the study area, totalling 6 ha. All trees with a diameter breast height (DBH) of 10 cm or greater were measured using a diameter tape. Leaves and fruit specimens from the trees with DBH of more than 10 cm were collected, recorded, and kept in the Universiti Kebangsaan Malaysia (UKM) Herbarium. Woody climbers and creepers were excluded from the study. The trees were identified to the species level using the existing specimens in the UKM Herbarium, existing taxonomic keys (Whitmore 1972; 1973), and the assistance of an experienced botanist from UKM and the Pahang Forestry Department. The nomenclature of the species was determined according to Turner (1995) and the International Plant Name Index (IPNI). Meanwhile, specimens that could not be matched with herbarium specimens were only identified up to the genus or family level.

Species New Records, Endemic and Conservation Status

New records and endemic species were listed and referred to according to Turner (1995) and Chua et al. (2010). Conservation status was determined based on the IUCN Red List of Threatened Species version 2020.1 (IUCN Red List of Threatened Species, 2020) and Yong et al. (2021). In addition, the Dipterocarpaceae family was also compared using the Malaysian Plant Red List (Saw et al. 2010).

RESULTS AND DISCUSSION

New Records of Species

About 58 of 624 tree species (9.3%) in the freshwater swamp forest in Perak Tengah were listed as new species to Perak State based on Turner (1995) (Table 1). The new records in Perak State may be due to insufficient sample collection from the past. The freshwater swamp forest also faces threats from deforestation and urban expansion, leading to habitat reduction (Saw 2010). On top of that, in Peninsular Malaysia, habitat degradation and loss pose the biggest challenge to plant populations. The primary causes of habitat

loss include changes in land use for agricultural, residential, and commercial development (Yong *et al.* 2021). The discovery of these 58 species during these two decades may offer signs of hope for Malaysia's local biodiversity. It also shows that the knowledge about these tree species is still far from satisfactory and complete.

Interestingly, some of the species listed in Table 1 were only found in one state. For example, Castanopsis foxworthyi and Helicia maxwelliana were found only in Terengganu. However, the species was also found in the study area, i.e., the freshwater swamp forest. On top of that, theoretically, C. foxworthyi also occupies lowland peat-swamp, heath forest, and upper montane forest, while H. maxwelliana is found in the montane forest at 1,200 m. Nishimura et al. (2008) revealed that some species from the Fagaceae family showed a random distribution pattern. Moreover, Palaquium confertum, Syzygium polyanthum var. polyanthum, S. polyanthum var. sessile, and Trigonostemon polyanthus were only found in Johore, Croton kelantanicus was found in Kelantan, and Syzygium claviflorum var. riparium which were documented in Pahang can also be found in the freshwater swamp forest of Perak Tengah.

Endemic Species of Peninsular Malaysia

An endemic species usually grows and is found in a specific area and has restricted distribution. A total of 72 tree species from 56 families encountered in the Perak Tengah freshwater swamp forest were listed as endemic based on Turner (1995) and Chua *et al.* (2010) (Table 2). From the list presented in Table 2, 12 of them are recorded as new in Perak.

A previous study in Perak Tengah revealed that Vatica flavida was left with a small number of individuals (249 individuals) due to the loss of large tracts of freshwater swamp forests followed by forest fragmentation. Shorea hemsleyana ssp. hemsleyana and Hopea apiculata were also threatened since their populations have decreased and their habitat has been degraded. It can be concluded that the most significant impact on the habitat has been from activities related to the development and human activities that lead to the depletion of their habitat (Liliwirianis 2021).

Table 1 List of new tree species to Perak State at Perak Tengah Freshwater Swamp Forest, Perak

No.	Species	Known distribution
1	Actinodaphne pruinosa	Kd, Pn, Sl, Ns, Ml, Sp
2	Alseodaphne bancana	Sl, Jh, Sp.
3	Alstonia scholaris	Kd, Kl, Tg, Ph, Sl, Ml, Jh.
4	Anacolosa frutescens	Kd, Ph, Sl, Ns, Ml, Jh, Sp.
5	Aporosa frutescens	Kd, Pn, Kl, Ph, Jh, Sp.
6	Aporosa microstachya	Kd, Tg
7	Ardisia korthalsiana	Tg, Ph, Ml, Jh.
8	Artocarpus kemando	Tg, Ph, Sl, Jh, Sp.
9	Calophyllum ferrugineum var. ferrugineum	Jh, Sp.
10	Calophyllum rubiginosum	Sl, Ns, Ml, Jh, Sp.
11	Calophyllum soulattri	Ps, Kd, Pn, Kl, Ph, Ns, Ml, Jh.
12	Canarium megalanthum	Kd, Ph, Ns, Jh.
13	Canthium cochinchinense	P. Langkawi, Tg.
14	Castanopsis foxworthyi	Tg.
15	Chrysophyllum roxburghii	Kd, Ph, Sl,, Ns, Ml, Jh, Sp.
16	Croton kelantanicus	Kl
17	Cryptocarya ferrea	Kd, Kl, Tg, Ph, Sl.
18	Cryptocarya zollingeriana	Kl, Sl.
19	Dillenia reticulata var. reticulata	MI
20	Diospyros ismailii	Kd, Tg, Ph, Sl, Ns, Jh;
21	Diospyros montana	P. Langkawi.
22	Diospyros undulata	Ps, Kd, P. Langkawi.
23	Durio carinatus	Ph, Jh.
24	Elaeocarpus nitidus var. velutinus	Kl, Ph, Jh;
25	Helicia maxwelliana	Tg.
26	Horsfieldia penangiana	Pn, Ph, Sl.
27	Hydnocarpus kunstleri var. tomentosa	Tg, Pk, Ph, Sl, Jh;
28	Knema latericia ssp. ridleyi	Tg, Jh, Sp.
29	Litsea erectinervia	Tg, Ph, Sl, Ml, Sp.
30	Litsea magnifica	Pn, Kl, Ph, Ml, Jh
31	Lophopetalum pallidum	Kd, Pn, Sl, Ns, Ml, Jh.
32	Madhuca decipiens	Jh, Sp.
33	Madhuca selangorica	Ph, Sl, Ns;
34	Neo-uvaria acuminatissima	Pn, Ph, Sl.
35	Neo-uvaria foetida	Tg, Ns, Ml.
36	Nephelium cuspidatum var. cuspidatum	Tg, Sl, Ns, Jh
37	Nephelium cuspidatum var. eriopetalum	Kl, Ph, Sl, Ns, Jh.
38	Palaquium confertum	Jh.
39	Palaquium leiocarpum	Kl, Tg.
40	Palaquium macrocarpum	Sl, Jh.
41	Palaquium obovatum	Kd, Pn, Kl, Tg, Ph, Sl, Ns, Ml, Jh, Sp.
42	Parishia maingayi	Tg, Pk, Ph, Sl, Jh, Sp.

No.	Species	Known distribution
43	Pimelodendron macrocarpum	Sl, Ml, Jh.
44	Polyalthia cinnamomea	Ps, Kd, Pn, Kl, Tg, Ph, Sl, Ns Ml, Jh.
45	Pternandra galeata	Ph, Jh.
46	Rennellia microcephala	Kd, Kl, Tg, Ph;
47	Santiria rubiginosa var. nana	SI.
48	Schoutenia accrescens ssp. borneensis	Ulu Endau, Jh.
49	Sterculia rubiginosa var. setistipula	SI.
50	Syzygium anisosepalum	Kd, Ph, Sl, Ns, Ml;
51	Syzygium attenuatum ssp. attenuatum var. attenuatum	Kd, Pn, Ph, Sl, Ml, Jh, Sp.
52	Syzygium claviflorum var. riparium	Ph
53	Syzygium polyanthum var. polyanthum	Jh
54	Syzygium polyanthum var. sessile	Jh
55	Syzygium scortechinii var. scortechinii	Tg, Ph, Sl, Ns, Jh;
56	Toona sureni	Ps, P. Langkawi, Kd, Pn, Kl Ph, Sl, Jh.
57	Trigonostemon polyanthus	Jh.
		Ps, Ph, Sl, Ns, Jh, Sp.

otes: Kd = Kedah; Pn = Penang; Sl = Selangor; NS = Negeri Sembilan; Ml = Melaka; Sp. = Singapore; Jh = Johore; Tg = Terengganu; Kl = Kelantan; Ps = Perlis; Ph = Pahang.

Table 2 List of tree species found at Perak Tengah Freshwater Swamp Forest that are endemic to Peninsular Malaysia

No.	Endemic species	Total individuals found	Distribution
1	Actinodaphne pruinosa*	3	Kd, Pn, Sl, Ns, Ml, Sp
2	Alangium ridleyi	1	Kd, Pn, Tg, Pk, Ph Sl, Ns, Ml
3	Alphonsea kingii	2	Pk
4	Alphonsea maingayi	1	Pk, Sl, Ns, Ml, Jh, Sp
5	Aporosa selangorica	1	Kd, Pk, Ph, Sl
6	Baccaurea griffithii	16	Throughout
7	Baccaurea polyneura	2	Pk, Ml;
8	Beilschmiedia insignis	1	Kl, Pk, Ph, Sl
9	Beilschmiedia pahangensis	1	Kl, Pk, Ph
10	Calophyllum subsessile	2	Pk
11	Calophyllum ferrugineum var. oblongifolium	4	Kl, Tg, Pk, Ph, Sl, Ns, Ml, Jh
12	Calophyllum wallichianum var. wallichianum	6	Kd, Pn, Kl, Pk, Ns
13	Canarium pseudosumatranum	1	Ps, Kd, Pk, Ph, Sl, Ns
14	Casearia clarkei var. clarkei	5	Pn, Pk, Sl, Ml, Sp

No.	Endemic species	Total individuals found	Distribution
15	Cinnamomum mollissimum	2	Pn, Kl, Tg, Pk, Ph, Sl, Ns, Ml, Jh
16	Croton erythrostachys	1	Tg, Pk, Ph, Sl, Ns, Ml, Jh
17	Croton kelantanicus*	1	Sg Ketil, Kl
18	Cyathocalyx pruniferus	4	Kl, Tg, Pk, Ph, Sl, Ml, Jh
19	Dacryodes kingii	1	Throughout
20	Dacryodes puberula	1	Pk, Ph, Ns, Ml
21	Dillenia reticulata var. reticulata*	8	Ml
22	Diospyros argentea	3	Sp, Tg, Ml, Pk, Sl, Ph, Ns, Jh,
23	Diospyros ismailii*	2	Kd, Tg, Ph, Sl, Ns, Jh
24	Diospyros scortechinii	1	Kl, Tg, Pk, Ph, Ns
25	Diospyros singaporensis	7	Kd, Pk, Ph, Sl, Ns, Ml, Jh
26	Elaeocarpus nitidus var. velutinus*	1	Kl, Ph, Jh
27	Elaeocarpus nitidus var. wrayi	1	Tg, Pk, Ph
28	Enicosanthum fuscum	6	Pk, Ph
29	Enicosanthum macranthum	3	Pk
30	Garcinia uniflora	1	Pk, Ph
31	Gentingia subsessilis	1	Pk, Ph, Sl
32	Gluta curtisii	1	Kd, Kl, Pn, Pk, Ph, Sl, Jh
33	Hydnocarpus filipes	1	Tg, Pk, Ph, Sl
34	Hydnocarpus kunstleri var. tomentosa	1	Tg, Pk, Ph, Sl, Jh;
35	Knema oblongifolia	1	Tg, Pk, Ph, Sl
36	Lithocarpus curtisii	4	Pn, Kl, Tg, Pk, Ph, Sl
37	Litsea curtisii	1	Kd, Pn, Pk, Sl, Jh
38	Litsea wrayi	1	Kd, Pk, Sl, Ns
39	Madhuca selangorica*	1	Ph, Sl, Ns
40	Mallotus griffithianus	2	Throughout
41	Mallotus penangensis	1	Throughout
42	Melanochyla nitida	1	Pn, Pk;
43	Mesua lepidota var. parviflora	1	Tg, Pk, Sl, Ml, Jh
44	Mesua nuda	1	Kd, Pn, Kl, Tg, Pk, Ph, Sl, Ns, Ml, Jh
45	Nephelium costatum	58	Pk, Ph, Ns, Ml, Kd, Kl, Jh
46	Nephelium hamulatum	9	Kd, Kl, Tg, Pk, Ph, Sl, Ns, Ml, Jh
47	Palaquium maingayi	2	Kd, Kl, Pk, Ph, Sl, Ns, Ml, Jh
48	Palaquium oxleyanum	1	Pk, Ph, Sl, Sp
49	Payena maingayi	7	Kd, Pn, Tg, Pk, Ph, Sl, Ns, Ml, Jh, Sp

No.	Endemic species	Total individuals found	Distribution
50	Pellacalyx saccardianus	12	Widespread
51	Pentace perakensis	1	Pk
52	Popowia fusca	1	Pk, Ph, Sp
53	Prunus malayana	6	Tg, Ph, Pk
54	Psydrax maingayi	5	Tg, Ph, Pk, Sl, Ns, Ml, Jh
55	Ptychopyxis caput-medusae	17	Kl, Tg, Pk, Ph, Sl, Ns, Ml, Sp
56	Rennellia microcephala*	1	Kd, Kl, Tg, Ph
57	Santiria ridleyi	5	Gg Keladang, Pk
58	Sarcotheca laxa var. laxa	52	Ps, Kd, Kl, Tg, Pk
59	Sarcotheca monophylla	9	Pk, Ph, Sl, Ml
60	Sauropus suberosus	1	Pk, Ph
61	Shorea singkawang ssp. singkawang	1	Tg, Ph, Pk
62	Streblus perakensis	3	Pk, Ph
63	Syzygium anisosepalum*	3	Kd, Ph, Sl, Ns, Ml
64	Syzygium castaneum	2	Pk, Jh
65	Syzygium claviflorum var. riparium*	1	Sg Tahan, Ph
66	Syzygium perakense	3	Pk, Sl
67	Syzygium polyanthum var. polyanthum*	1	Sg Kayu, Jh
68	Syzygium polyanthum var. sessile*	2	Jh
69	Syzygium scortechinii var. scortechinii*	1	Tg, Ph, Sl, Ns, Jh
70	Vatica flavida	6	Pk
71	Vatica pallida	1	Pn, Pk

Notes: Pk = Perak; Ml = Melaka; Kl = Kelantan; Ph = Pahang; Sl= Selangor; NS = Negeri Sembilan; Pn = Penang; Sp.= Singapore; Jh = Johore; Tg = Terengganu. *New record in Perak.

Since species have a necessary minimum population size and distribution for optimum survival, extremely small residual populations of rare and endemic taxa may all be extinct. This is exacerbated by edge effects, which may include invasion and species composition alteration by more common species prevalent just outside this forest. Most studies identifying hotspots do not use the same criteria proposed at the global scale (Major 1988), and endemicity is often the only criterion used (Huang et al. 2012; Kraf et al. 2010). This is because endemic species are often explored better in a particular area than the complete flora or the threats. Furthermore, since narrowly endemic species are often endangered, endemic taxa are an important category for conservation (Laffan et al. 2013)both within their region and at continental scales. We do this using the plant family Myrtaceae in relation to the globally important Greater Blue Mountains World

Heritage Area (GBMWHA). Additionally, since their numbers and distribution are well-known and because they sustain virtually all animal life, plants have been employed as indicators of species endemism.

IUCN Conservation Status

A total of 2,830 plant species in Malaysia are listed in the IUCN Red List of Threatened Species version 2020.1 (The IUCN Red List of Threatened Species, 2020). Only one species is listed in the extinct (EX) category, one species is listed as extinct in the wild (EW), 166 species are listed as critically endangered (CR), 248 species are categorized as endangered (EN), 579 species are included in the vulnerable category (VU), 194 species are classified as near threatened (NT), 102 species are

categorized as lower risk/conservation dependent (LR/CD), 98 species are considered in the status of data deficient (DD), and 1,440 species are classified as the least concern (LC; The IUCN Red List of Threatened Species, 2020). Species categorized as CR, EN, and VU are collectively referred to as threatened.

All the species found in the study plots were compared with the IUCN Red List, with 194 of 624 tree species in the Perak Tengah freshwater swamp forest were found in the Red List of Threatened Species (Table 3). The study area comprises 7% of the listed plants in the IUCN for Malaysia. The Dipterocarpaceae family leads the number of threatened species with 22 species (46.8%), and the family comprises six species listed as CR.

Table 3 The IUCN conservation status of tree species in Perak Tengah freshwater swamp forest

No.	Family	Species	IUCN status
1	Anacardiaceae	Gluta curtisii	Lower risk/ least concern
2	Anacardiaceae	Mangifera foetida	Lower risk/ least concern
3	Anacardiaceae	Mangifera magnifica	Lower risk/ least concern
4	Anacardiaceae	Melanochyla nitida	Lower risk/ least concern
5	Anacardiaceae	Pentaspadon motleyi	Data Deficient
6	Anisophylleaceae	Anisophyllea apetala	Vulnerable
7	Annonaceae	Alphonsea kingii	Critically endangered
8	Annonaceae	Alphonsea maingayi	Lower risk/ least concern
9	Annonaceae	Cyathocalyx pruniferus	Lower risk/ least concern
10	Annonaceae	Enicosanthum fuscum	Near Threatened
11	Annonaceae	Enicosanthum macranthum	Vulnerable
12	Annonaceae	Popowia fusca	Lower risk/ least concern
13	Apocynaceae	Alstonia scholaris	Lower risk/ least concern
14	Apocynaceae	Dyera costulata	Lower risk/ least concern
15	Apocynaceae	Hunteria zeylanica	Lower risk/ least concern
16	Aquifoliaceae	Ilex cymosa	Lower risk/ least concern
17	Burseraceae	Canarium hirsutum	Lower risk/ least concern
18	Burseraceae	Canarium littorale	Lower risk/ least concern
19	Burseraceae	Canarium pseudodecumanum	Vulnerable
20	Burseraceae	Canarium pseudosumatranum	Lower risk: conservation dependent
21	Burseraceae	Dacryodes incurvata	Lower risk/ least concern
22	Burseraceae	Dacryodes kingii	Lower risk: conservation dependent
23	Burseraceae	Dacryodes puberula	Vulnerable
24	Burseraceae	Dacryodes rostrata	Lower risk/ least concern
25	Burseraceae	Santiria apiculata var. apiculata	Lower risk/ least concern
26	Burseraceae	Santiria griffithii	Lower risk/ least concern
27	Burseraceae	Santiria laevigata	Lower risk/ least concern
28	Burseraceae	Santiria rubiginosa var. nana	Vulnerable
29	Burseraceae	Santiria rubiginosa vat. rubiginosa	Vulnerable
30	Celastraceae	Bhesa paniculata	Lower risk/ least concern

No.	Family	Species	IUCN status
31	Celastraceae	Bhesa robusta	Lower risk/ least concern
32	Celastraceae	Lophopetalum javanicum	Lower risk/ least concern
33	Chloranthaceae	Licania splendens	Lower risk/ least concern
34	Chrysobalanaceae	Parinari costata ssp. polyneura	Lower risk/ least concern
35	Ctenolophonaceae	Ctenolophon parvifolius	Vulnerable
36	Dilleniaceae	Dillenia reticulata var. psilocarpella	Lower risk/ least concern
37	Dilleniaceae	Dillenia reticulata var. reticulata	Lower risk/ least concern
38	Dipterocarpaceae	Anisoptera costata	Endangered
39	Dipterocarpaceae	Dipterocarpus crinitus	Vulnerable
40	Dipterocarpaceae	Dipterocarpus kerrii	Endangered
41	Dipterocarpaceae	Dipterocarpus kunstleri	Critically endangered
42	Dipterocarpaceae	Dipterocarpus semivestitus	Critically endangered
43	Dipterocarpaceae	Hopea apiculata	Endangered
44	Dipterocarpaceae	Neobalanocarpus heimii	Endangered
45	Dipterocarpaceae	Shorea curtisii ssp. curtisii	Lower risk/ least concern
46	Dipterocarpaceae	Shorea guiso	Vulnerable
47	Dipterocarpaceae	Shorea hemsleyana ssp. hemsleyana	Vulnerable
48	Dipterocarpaceae	Shorea hopeifolia	Critically endangered
49	Dipterocarpaceae	Shorea leprosula	Near Threatened
50	Dipterocarpaceae	Shorea macrantha	Critically endangered
51	Dipterocarpaceae	Shorea macroptera	Lower risk/ least concern
52	Dipterocarpaceae	Shorea materialis	Critically endangered
53	Dipterocarpaceae	Shorea multiflora	Lower risk/ least concern
54	Dipterocarpaceae	Shorea ovalis ssp. ovalis	Endangered
55	Dipterocarpaceae	Shorea parvifolia ssp. parvifolia	Endangered
56	Dipterocarpaceae	Shorea pauciflora	Endangered
57	Dipterocarpaceae	Shorea platycarpa	Critically endangered
58	Dipterocarpaceae	Shorea singkawang ssp. singkawang	Vulnerable
59	Dipterocarpaceae	Vatica flavida	Critically endangered
60	Dipterocarpaceae	Vatica pallida	Endangered
61	Dipterocarpaceae	Vatica pauciflora	Vulnerable
62	Dipterocarpaceae	Vatica stapfiana	Vulnerable
63	Dipterocarpaceae	Vatica umbonata	Lower risk/ least concern
64	Dipterocarpaceae	Vatica venulosa	Critically endangered
65	Ebenaceae	Diospyros apiculata	Lower risk/ least concern
66	Ebenaceae	Diospyros areolata	Lower risk/ least concern
67	Ebenaceae	Diospyros argentea	Lower risk/ least concern
68	Ebenaceae	Diospyros ismailii	Lower risk/ least concern
69	Ebenaceae	Diospyros scortechinii	Lower risk/ least concern
70	Ebenaceae	Diospyros singaporensis	Lower risk/ least concern
71	Elaeocarpaceae	Elaeocarpus petiolatus	Lower risk/ least concern
72	Euphorbiaceae	Baccaurea ramiflora	Lower risk/ least concern
73	Euphorbiaceae	Breynia vitis-idaea	Lower risk/ least concern
74	Euphorbiaceae	Claoxylon longifolium	Lower risk/ least concern
75	Euphorbiaceae	Croton kelantanicus	Vulnerable
76	Euphorbiaceae	Endospermum diadenum	Lower risk/ least concern
77	Euphorbiaceae	Mallotus penangensis	Lower risk/ least concern
78	Euphorbiaceae	Sapium baccatum	Lower risk/ least concern

No.	Family	Species	IUCN status
80	Flacourtiaceae	Hydnocarpus filipes	Vulnerable
81	Flacourtiaceae	Ryparosa javanica	Lower risk/ least concern
82	Gnetaceae	Gnetum gnemon var. gnemon	Lower risk/ least concern
83	Guttiferae	Calophyllum soulattri	Lower risk/ least concern
84	Guttiferae	Cratoxylum arborescens var. arborescens	Lower risk/ least concern
85	Guttiferae	Cratoxylum formosum	Lower risk/ least concern
86	Guttiferae	Cratoxylum maingayi	Lower risk/ least concern
87	Guttiferae	Garcinia scortechinii	Lower risk/ least concern
88	Guttifereae	Cratoxylum cochinchinense	Lower risk/ least concern
89	Guttifereae	Garcinia uniflora	Lower risk/ least concern
90	Guttifereae	Mesua nuda	Lower risk/ least concern
91	Irvingiaceae	Irvingia malayana	Lower risk/ least concern
92	Lauraceae	Actinodaphne pruinosa	Lower risk/ least concern
93	Lauraceae	Alseodaphne insignis	Lower risk/ least concern
94	Lauraceae	Beilschmiedia insignis	Lower risk/ least concern
95	Lauraceae	Beilschmiedia kunstleri	Lower risk/ least concern
96	Lauraceae	Beilschmiedia madang	Lower risk/ least concern
97	Lauraceae	Beilschmiedia pahangensis	Lower risk/ least concern
98	Lauraceae	Beilschmiedia wallichiana	Vulnerable
99	Lauraceae	Cinnamomum iners	Lower risk/ least concern
100	Lauraceae	Cinnamomum mollissimum	Lower risk/ least concern
101	Lauraceae	Cinnamomum porrectum	Lower risk/ least concern
102	Lauraceae	Cryptocarya ferrea	Lower risk/ least concern
103	Lauraceae	Litsea castanea	Lower risk/ least concern
104	Lauraceae	Litsea curtisii	Endangered
105	Lauraceae	Litsea elliptica	Lower risk/ least concern
106	Lauraceae	Litsea erectinervia	Lower risk/ least concern
107	Lauraceae	Litsea grandis	Lower risk/ least concern
108	Lauraceae	Litsea myristicifolia	Lower risk/ least concern
109	Lauraceae	Litsea sessiliflora	Lower risk/ least concern
110	Lauraceae	Litsea wrayi	Lower risk/ least concern
111	Lauraceae	Nothaphoebe panduriformis	Lower risk/ least concern
112	Leguminosae	Acacia mangium	Lower risk/ least concern
113	Leguminosae	Cynometra malaccensis	Near threatened
114	Leguminosae	Koompassia malaccensis	Lower risk/ conservation dependent
115	Leguminosae	Pongamia pinnata	Lower risk/ least concern
116	Leguminosae	Sindora coriacea	Lower risk/ least concern
117	Meliaceae	Aglaia elliptica	Lower risk/ least concern
118	Meliaceae	Aglaia argentea	Lower risk/ least concern
119	Meliaceae	Aglaia crassinervia	Near Threatened
120	Meliaceae	Aglaia odoratissima	Lower risk/ least concern
121	Meliaceae	Aglaia rubiginosa	Near Threatened
122	Meliaceae	Aglaia squamulosa	Near Threatened
123	Meliaceae	Sandoricum koetjape	Vulnerable
124	Moraceae	Antiaris toxicaria	Lower risk/ least concern
125	Moraceae	Artocarpus elasticus	Lower risk/ least concern
126	Moraceae	Ficus fistulosa var. fistulosa	Lower risk/ least concern
127	Moraceae	Ficus vasculosa	Lower risk/ least concern
128	Myristicaceae	Horsfieldia crassifolia	Near Threatened
	-	· · · · · · · · · · · · · · · · · · ·	

No.	Family	Species	IUCN status
129	Myristicaceae	Horsfieldia irya	Lower risk/ least concern
130	Myristicaceae	Horsfieldia penangiana	Vulnerable
131	Myristicaceae	Horsfieldia superba	Near Threatened
132	Myristicaceae	Horsfieldia tomentosa	Near Threatened
133	Myristicaceae	Knema conferta	Lower risk/ least concern
134	Myristicaceae	Knema curtisii var. paludosa	Vulnerable
135	Myristicaceae	Knema furfuracea	Lower risk/ least concern
136	Myristicaceae	Knema glauca	Vulnerable
137	Myristicaceae	Knema kunstleri	Near Threatened
138	Myristicaceae	Knema latericia ssp. ridleyi	Lower risk/ least concern
139	Myristicaceae	Knema laurina var. heteropilis	Lower risk/ least concern
140	Myristicaceae	Knema laurina var. laurina	Lower risk/ least concern
141	Myristicaceae	Knema oblongifolia	Lower risk: conservation dependent
142	Myristicaceae	Knema scortechinii	Lower risk/ least concern
143	Myristicaceae	Knema stenophylla	Lower risk/ least concern
144	Myristicaceae	Myristica iners	Lower risk/ least concern
145	Myrsinaceae	Ardisia korthalsiana	Lower risk/ least concern
146	Myrtaceae	Melaleuca cajuputi	Lower risk/ least concern
147	Myrtaceae	Rhodamnia cinerea	Lower risk/ least concern
148	Myrtaceae	Syzygium claviflorum var. claviflorum	Lower risk/ least concern
149	Myrtaceae	Syzygium claviflorum var. riparium	Lower risk/ least concern
150	Myrtaceae	Syzygium nervosum	Lower risk/ least concern
151	Olacaceae	Anacolosa frutescens	Lower risk/ least concern
152	Olacaceae	Ochanostachys amentacea	Data deficient
153	Opiliaceae	Champereia manillana	Lower risk/ least concern
154	Oxalidaceae	Sarcotheca laxa var. laxa	Vulnerable
155	Oxalidaceae	Sarcotheca monophylla	Near Threatened
156	Proteaceae	Helicia attenuata	Lower risk/ least concern
157	Proteaceae	Helicia petiolaris var. petiolaris	Lower risk/ least concern
158	Rhizophoraceae	Pellacalyx saccardianus	Lower risk/ least concern
159	Rosaceae	Prunus arborea var. arborea	Lower risk/ least concern
160	Rosaceae	Prunus malayana	Lower risk/ least concern
161	Rosaceae	Prunus polystachya	Lower risk/ least concern
162	Rutaceae	Acronychia pedunculata	Lower risk/ least concern
163	Sapindaceae	Arytera littoralis	Lower risk/ least concern
164	Sapindaceae	Glenniea penangensis	Vulnerable
165	Sapindaceae	Lepisanthes tetraphylla	Lower risk/ least concern
166	Sapindaceae	Nephelium costatum	Vulnerable
167	Sapindaceae	Nephelium hamulatum	Vulnerable
168	Sapindaceae	Nephelium lappaceum var. lappaceum	Lower risk/ least concern
169	Sapindaceae	Nephelium lappaceum var. pallens	Lower risk/ least concern
170	Sapindaceae	Pometia pinnata	Lower risk/ least concern
171	Sapotaceae	Chrysophyllum roxburghii	Lower risk/ least concern
172	Sapotaceae	Madhuca korthalsii	Near Threatened
173	Sapotaceae	Madhuca motleyana	Near Threatened
174	Sapotaceae	Madhuca selangorica	Lower risk: conservation dependent
175	Sapotaceae	Madhuca utilis	Endangered
176	Sapotaceae	Palaquium gutta	Near Threatened
177	Sapotaceae	Palaquium herveyi	Near Threatened

No.	Family	Species	IUCN status
178	Sapotaceae	Palaquium leiocarpum	Near Threatened
179	Sapotaceae	Palaquium maingayi	Vulnerable
180	Sapotaceae	Palaquium obovatum	Lower risk/ least concern
181	Sapotaceae	Payena lucida	Near Threatened
182	Sapotaceae	Payena maingayi	Lower risk/ least concern
183	Sapotaceae	Pouteria malaccensis	Near Threatened
184	Sterculiaceae	Sterculia parviflora	Lower risk/ least concern
185	Thymelaeaceae	Aquilaria malaccensis	Vulnerable
186	Thymelaeaceae	Gonystylus affinis	Vulnerable
187	Tiliaceae	Microcos laurifolia	Lower risk: conservation dependent
188	Tiliaceae	Microcos tomentosa	Lower risk/ least concern
189	Tiliaceae	Pentace curtisii	Near Threatened
190	Tiliaceae	Pentace perakensis	Vulnerable
191	Tiliaceae	Pentace triptera	Lower risk/ least concern
192	Ulmaceae	Gironniera subaequalis	Lower risk/ least concern
193	Verbenaceae	Callicarpa longifolia	Lower risk/ least concern
194	Verbenaceae	Vitex pinnata	Lower risk/ least concern

A total of 92 taxa of Peninsular Malaysia Dipterocarps are listed under the threatened category of the IUCN Red List (Saw et al. 2010). There are four species of Burseraceae; three species of Myristicaceae, Sapindaceae, and Sapotaceae; two species of Thymelaeaceae and Lauraceae; and one species of Anisophylleaceae, Annonaceae, Euphorbiaceae, Fagaceae, Flacourtiaceae Meliaceae, Oxalidaceae, and Tiliaceae. Thus, the threatened species of Dipterocarps found in the Perak Tengah freshwater swamp forest contributed to 23.9% of threatened Peninsular Malaysia Dipterocarps species.

Liliwirianis (2021)reported that Dipterocarp species residing in Perak Tengah comprise CR species. Unfortunately, the population size, to some extent, is extremely small, comprising less than 53 individuals, as befallen D. semivestitus. The tree number had decreased from the report by Saw (2010) over ten years. Saw (2010) reported that the freshwater swamp forest of the Lumut District, Perak, containing some of the rarest trees (D. semivestitus and V. flavida), is now confined to remnant areas. In the case of D. semivestitus, the species exists only as a remnant population in a 55-ha freshwater swamp forest at Universiti Teknologi MARA, Perak. To date, it is the only population that has been discovered in Peninsular Malaysia. An extensive survey of this area found only 53 individual trees. The species, which was once considered extinct, has been found in Perak, Malaysia.

Endangered tree conservation is of utmost priority, as endangered species compete for limited suitable habitats with human development. Saw *et al.* (2010) reported that 92 taxa (56.1%) of Dipterocarpaceae were at some level of threat in Malaysia. In addition, Saw and Yen (2000) urged changes in land use patterns and rising demands on forest resources, and Malaysia's attention to the sustainable use of forest resources now involves consideration of the entire problem of protection of all biodiversity.

The IUCN Red List Categories and Criteria were developed using five criteria: population reduction, geographic range in the form of extent of occurrence or area of occupancy, small population size and decline, very small or restricted population, and quantitative analysis. Yong *et al.* (2021) confirmed that Perak is the second state with the highest number of threatened taxa, with 166 taxa. In addition, Chua *et al.* (2010) affirmed that Perak is the second highest state that comprises several threatened taxa (53 taxa) of Dipterocarps and perhaps is the most vulnerable as it has the greatest number of CR taxa (10), i.e., *Dipterocarpus coriaceus*, *D. semivestitus*, *Hopea auriculata*, *Hopea bilitonensis*, *Parashorea globosa*, *S. hemsleyana* ssp.

hemsleyana, Shorea lamellata, Shorea lumutensis, Shorea teysmanniana, and V. flavida. Our study showed that the freshwater swamp forest of the Perak Tengah study area consisted of some of the species: D. semivestitus, S. hemsleyana ssp. Hemsleyana, and V. flavida.

CONCLUSION

For a large field of research in freshwater swamp forests in Perak Tengah, the amount of endangered, new records, and vulnerable species is high. The results indicated that six species were documented as new for Perak, endemic and listed in the IUCN. The species were V. pallida, C. kelantanicus, Madhuca selangorica, Actinodahphne pruinosa, Dillenia reticulata var. reticulata, Diospyros ismailii, and S. claviflorum var. riparium. The species are also highly specialized since they are only confined to their special habitats. Thus, these unique groups would be at risk if the freshwater swamp forest and its adjacent regions are disturbed. Conservation of native and rare species could demand active protection, restoration, and high uniqueness of species-rich habitats and areas since the listed threatened species are currently not protected in the network of Totally Protected Areas (TPA) despite some of the study areas being monitored by the Forest Research Institute of Malaysia (FRIM). The Perak Tengah freshwater swamp forest has unique areas that house many endemic and endangered species needing of protection, and it is important to protect the environment and mitigate the threats.

ACKNOWLEDGMENTS

This work was supported by the research grants through the Fundamental Research Grant Scheme (FRGS) 600-RMI/FRGS 5/3 (41/2014) and UiTM's Research Intensive Faculty (RIF) Grant (600-RMI/DANA 5/3/RIF (404/2012)).

REFERENCES

Anderson S. 1994. Area and endemism. The quarterly review of biology 69(4):451-71.

- Chua LSL, Suhaida M, Hamidah M, Saw LG. 2010. Malaysia Plant Redlist: Peninsular Malaysian Dipterocarpaceae. Research Pamphlet. No. 129. Kepong (MY): Forest Research Institute Malaysia.
- Davies KF, Margules CR, Lawrence JF. 2004. A synergistic effect puts rare, specialized species at greater risk of extinction. Ecology 85(1):265-71.
- Dobson FS, Yu J, Smith AT. 1995. The importance of evaluating rarity. Conservation Biology 9(6):1648-51.
- Fifth National Report to the Convention on Biological Diversity. 2020. Government of Malaysia Ministry of Natural Resources and Environment Fifth National Report to the Convention on Biological Diversity. www.nre.gov. my
- Huang J, Chen B, Liu C, Lai J, Zhang J, Ma K. 2012. Identifying hotspots of endemic woody seed plant diversity in China. Diversity and Distributions 18:673-88. DOI:10.1111/j.1472-4642.2011.00845.x
- Huang S, Oey L. 2019. Malay Archipelago forest loss to cash crops and urban expansion contributes to weaken the Asian summer monsoon: An atmospheric modeling study. J Clim 32(11):3189-3205. DOI:10.1175/JCLI-D-18-0467.1
- International Plant Names Index [Internet]. 2020. Available from: https://www.ipni.org/
- Jaafar WSWM, Maulud KNA, Kamarulzaman AMM, Raihan A, Sah SM, Ahmad A, Saad SNM, Azmi ATM, Syukri NKAJ, Khan WR. 2020. The Influence of Deforestation on Land Surface Temperature: A Case Study of Perak and Kedah, Malaysia. Forests 11(6):670. doi.org/10.3390/ f11060670
- Kanniah KD, Siong HC. 2017. Urban forest cover change and sustainability of Malaysian cities. Chem Eng Trans 56:673-8.
- Kessler M. 2002. The elevational gradient of Andean plant endemism: Varying influences of taxon-specific traits and topography at different taxonomic levels. J Biogeogr 29(9):1159-65. DOI: 10.1046/j.1365-2699.2002.00773.x
- Kiew R, Rafidah AR, Ong PT, Ummul Nazrah AR. 2017 Limestone treasures: Rare plants in Peninsular Malaysiawhere they are, where they grow and how to conserve them. Malaysian Naturalist 71:32-41.
- Kiew R, Rahman RA. 2021. Plant diversity assessment of karst limestone, a case study of Malaysia's Batu Caves. Nat Conserv 44:21-49.
- Kraf NJB, Baldwin BG, Ackerly DD. 2010. Range size, taxon age and hotspots of neo endemism in the California flora. Divers Distrib 16:403-13.
- Kruckeberg AR, Rabinowitz D. 1985. Biological aspects of endemism in higher plants. Ann Rev Ecol Syst 16(1):447-79.
- Laffan SW, Ramp D, Roger E. 2013. Using endemism to assess representation of protected areas-the family Myrtaceae in the Greater Blue Mountains World Heritage Area. J Biogeogr 40(3):570-8. DOI:10.1111/jbi.12001

- Liliwirianis N. 2021. Ecological Characteristics of Freshwater Swamp Forest, Perak Tengah, Malaysia [Thesis]. Bangi (MY): Universiti Kebangsaan Malaysia. Retrieved from Universiti Kebangsaan Malaysia.
- Liliwirianis N, Suratman MN, Tahir SZM. 2013. Conservation of the critically endangered tree species Dipterocarpus semivestitus in Malaysia. In BEIAC 2013. IEEE Business Engineering and Industrial Applications Colloquium. p.225-8. DOI:10.1109/BEIAC.2013.6560121
- Major J. 1988. Endemism: A botanical perspective. In Myers AA, Giller PS (Editors). Analytical Biogeography: An Integrated Approach to the Study of Animal and Plant Distributions. London (UK): Chapman & Hall. p. 117-46.
- Ng FSP, Low CM, Sanah MAN. 1990. Endemic trees of the Malay Peninsular. Research Pamphlet No. 106. Forest Research Institute Malaysia.
- Nishimura S, Yoneda T, Fujii S, Mukhtar E, Kanzaki M. 2008. Spatial patterns and habitat associations of Fagaceae in a hill dipterocarp forest in Ulu Gadut, West Sumatra. J Trop Ecol 24(5):535-50.
- Primack RB. 2002. Essentials of Conservation Biology. Sunderland (US): Sinauer Association.

- Saw LG. 2010. Vegetation of Peninsular Malaysia. In Kiew R, Chung RCK, Saw LG, Soepardmo E, Boyce PC (Editors). Flora of Peninsular Malaysia 2(1):21-45.
- Saw LG. 2010. Vegetation of Peninsular Malaysia. Seed Plant 1:1-41.
- Saw LG, Chung RCK. 2015. The Flora of Malaysia Projects. Rodriguesia 66(4):947-60.
- Saw LG, Yen SY. 2000. Conservation of Dipterocarpaceae in Peninsular Malaysia. J Trop For Sci 12(3):593-615.
- Turner IM. 1995. A Catalogue of the Vascular Plants of Malaya. Vol. 1. National Parks Board Singapore Botanic Garden.
- Walker BH. 1987. A general model of savanna structure and function. IUBS Monogr Ser. 1-12.
- Whitmore TC. 1972. Tree Flora of Malaya. Kuala Lumpur (MY): Longman Malaysia Sdn. Berhad.
- Whitmore TC. 1973. Tree Flora of Malaya. Vol. 2. Kuala Lumpur (MY):Longman Malaysia Sdn. Berhad.
- Yong WS, Chua LS, Lau KH, Siti Nur Fatinah K, Cheah YH, Yao TL, Rafidah AR, Lim CL, Syahida Emiza S, Ummul Nazrah AR, Nor Ezzawanis AT. 2021. Malaysia Red List: Plants of Peninsular Malaysia Part 1. Aslita, Kuala Lumpur.