GENETIC VARIATION OF WILD Musa acuminata COLLA FROM INDONESIA

YUYU SURYASARI POERBA*, DIYAH MARTANTI AND FAJARUDIN AHMAD

Research Center for Biology, Indonesian Institute of Sciences, Bogor 16911, Indonesia

Received 25 August 2017 / Accepted 11 May 2018

ABSTRACT

Indonesia is the center of origin and diversity of *Musa acuminata* Colla, one of the progenitors of cultivated bananas today. However, the genetic variation of wild *M. acuminata* has not been studied extensively, thus this study aimed to assess the genetic variation of the Indonesian wild *M. acuminata* based on 10 RAPD (Random Amplified Polymorphic DNA) and 10 ISSR (Inter Simple Sequence Repeats) markers. The genetic properties of 17 populations of wild *M. acuminata* were analyzed by Popgene 1.32 based on Nei's unbiased measures of genetic identity and genetic distance. Of the 443 DNA bands produced, 425 (95.94%) were polymorphic. Cluster analysis of the combined data of RAPD and ISSR produced a dendrogram which separated the population of *M. acuminata* (A genome) from *M. balbisiana* (B genome), but not from *M. schizocarpa* (S genome). Nei's genetic distance of the 17 populations of wild *M. acuminata* ranged from 0.3676 to 0.1634. The highest genetic distance was observed between *M. acuminata* var *rutilifes* (from East Java) and *M. acuminata* var *sumatrana* (from West Sumatra). The percentages of polymorphic loci among the 17 populations of *M. acuminata* ranged from 9.93% to 39.73%. Nei's gene diversity (h) ranged from 0.041 to 0.1418. *M. acuminata* var *malaccensis* population was the most diverse among the researched 17 *M. acuminata*. The high level of genetic diversity of the wild *M. acuminata* from Indonesia emphasizes the need for conservation and preservation of the natural population and its use in the banana breeding program.

Keywords: genetic variation, Indonesia, ISSR, RAPD, wild Musa acuminata

INTRODUCTION

Bananas (Musa spp., family Musaceae, order Zingiberales) are important crops in Indonesia and the world. These are essential components of the diet and important sources of income for about 400 million people in over 120 countries in the tropical and sub-tropical zones (Jones 2000). The Musa genus, together with other genera (Ensete and Musella), is an herbaceous monocot plant that has two generic sections, namely: Callimusa and Musa. Section Callimusa is a combination of three former sections, i.e. Australimusa (x=10), Ingentimusa (x=7) and Callimusa (x=10), while section Musa is formerly Eumusa (x=11) and Rhodochlamys (x=11) (Häkkinen 2013). Genus Musa carries A genome (M. acuminata Colla), B genome (M. balbisiana Colla), S genome (M. schizocarpa Simmonds), and T genome (M. textilis Née).

There is no observed natural hybridization between B, T, or S genome, but *M. acuminata* hybridizes with *M. balbisiana*, *M. schizocarpa*, and *M. textilis*. Although there are few cultivated bananas with S and T genomes, only two species are regarded as the ancestors of cultivated bananas, i.e., *M. acuminata* and *M. balbisiana* (Simmond & Shepherd 1955). Their fruits contain many seeds with a small amount of edible pulp. The wild-seeded bananas in the genus *Musa* represent some of the best sources of genetic diversity that can be used in the breeding of new edible bananas (Häkkinen & Wallace 2011).

Musa acuminata is a complex species that is divided into at least 7 subspecies with different geographic distributions (Simmonds & Shepherd 1955; Perrier et al. 2011). The 7 subspecies are M. acuminata subsp. acuminata, M. acuminata subsp. errans (Blanco) RV Valmayor, M. acuminata subsp. halabanensis (Meijer) M

^{*}Corresponding author: yyspoerba@yahoo.com

Hotta, M. acuminata subsp. malaccensis (Ridl.) NW Simmonds, M. acuminata subsp. microcarpa (Becc.) NW Simmonds, M. acuminata subsp. siamea NW Simmonds, and M. acuminata subsp. truncata (Ridl.). Three of the 15 varieties of Musa acuminata from Indonesia (M. acuminata var. alasensis, M. acuminata var. nakaii, and M. acuminata var. rutilifes) described by Nasution (1991) based on their morphology, are classified as rare plants of Indonesia (Mogea et al. 2001). The wild M. acuminata serves an important role in banana breeding, specifically in providing genetic resources for disease resistance (Javed et al. 2004; Uma et al. 2006; Sutanto et al. 2014; Fraser-Smith et al. 2016).

Assessment of the genetic variation is a representative tool for the management of genetic resources and plant breeding program. Although genetic diversity of wild M. acuminata has been studied extensively in other reports (Wong et al. 2001; Wong et al. 2002; Bartos et al. 2005; Raboin et al. 2005; Li et al. 2010; Liu et al. 2010; Christelová et al. 2011; Perrier et al. 2011; D'Hont et al. 2012; Mukunthakumar et al. 2013; Čížková *et al.* 2015; Martanti *et al.* 2015; Sardos *et* al. 2016), only a small amount of the material used for these studies has originated from Indonesia. Thus, this study aimed to analyze the genetic variation of wild bananas within Musa acuminata coming from Indonesia by using the Random Amplified Polymorphic DNA (RAPD) and Inter Simple Sequence Repeats (ISSR) markers.

RAPD has been used as a cost-effective method for analyzing genetic variation (Williams *et al.* 1990; Welsh & McClelland 1990). Although it has been reported for its limited reproducible results for DNA amplification,

RAPD has been used for analyzing banana genetic diversity (Kaemmer et al. 1992; Howell et al. 1994; Bhat & Jarret 1995; Uma et al. 2006; Jain et al. 2007; Poerba & Ahmad 2010a, 2010b; Poerba et al. 2012; Poerba & Ahmad 2013; Faure et al. 1993; Pillay et al. 2000, 2006; Lamare & Rao 2015). Similarly, Inter Simple Sequence Repeats (ISSR) is a cost-effective method for studying genetic variation (with no need of previous genome sequence), fast, and is a dominant marker (Zietkiewicz et al. 1994). The use of dominant marker for assessing the genetic variation within individual genotype promising population is because many polymorphic loci could be generated with ease at a short time even without information from the previous genome sequence (Nybom & Bartish 2000; Nybom 2004). Polymorphisms within individual genotype are mainly caused by different sequences in one or two primer binding sites and could indicate the presence or absence of the amplified products (Sperisen & Bucher 1998).

MATERIALS AND METHODS

Samples

A total of 209 samples (from 19 populations) of wild bananas, *M. acuminata* (A genome), *M. balbisiana* (B genome) and *M. schizocarpa* NW Simmonds (S genome) collected from different locations in Indonesia were used in this study (Table 1). Descriptions of all accessions were based on morphology as described by Nasution (1991) and IPGRI-INIBAB/CIRAD (1996).

Table 1	List of sar	nples usec	l in th	ne study
---------	-------------	------------	---------	----------

No	Coll.	Scientific name	Local name	Origin
	number			8
1	PAN01	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Yaki, Pisang Wolai	Sulawesi Utara
2	PAN08	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Yaki, Pisang Wolai	Sulawesi Utara
3	PAN09	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Yaki, Pisang Wolai	Sulawesi Utara
4	A12X	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Yaki, Pisang Wolai	Sulawesi Utara
5	A42X	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Yaki, Pisang Wolai	Sulawesi Utara
6	A62X	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Yaki, Pisang Wolai	Sulawesi Utara
7	PA 01	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Hutan	Timika, Papua
8	PA 02	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Hutan	Timika, Papua
9	PA 03	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Hutan	Timika, Papua
10	PA 04	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Hutan	Timika, Papua
11	PA 07	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Hutan	Timika, Papua
12	PA 08	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Hutan	Timika, Papua
13	PA 09	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Hutan	Timika, Papua
14	PA 10	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Hutan	Timika, Papua
15	PA 11	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Hutan	Timika, Papua
16	PA 13	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Hutan	Timika, Papua

17	PA 14	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Hutan	Timika, Papua
18	PA 15	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Hutan	Timika, Papua
19	PA 16	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Hutan	Timika, Papua
20	PA 17	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Hutan	Timika, Papua
21	PA 18	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Hutan	Timika, Papua
22	PA 19	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Hutan	Timika, Papua
23	PA 21	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Hutan	Timika, Papua
24	PA 23	1 ,	C	, 1
		Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Hutan	Timika, Papua
25	PA 24	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Hutan	Timika, Papua
26	PA 25	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Hutan	Timika, Papua
27	PA 26	Musa acuminata Colla subsp. banksii (F.Muell.) Simmonds	Pisang Hutan	Timika, Papua
28	PA61	Musa acuminata Colla var. acuminata	Pisang Hutan	Sentani, Papua
29	PA79a	Musa acuminata Colla var. acuminata	Pisang Hutan	Manokwari, Papua Barat
30	PA79b	Musa acuminata Colla var. acuminata	Pisang Hutan	Manokwari, Papua Barat
31	PA84	Musa acuminata Colla var. acuminata	Pisang Hutan	Manokwari, Papua Barat
32	PA85	Musa acuminata Colla var. acuminata	Pisang Hutan	Manokwari, Papua Barat
33	PA86	Musa acuminata Colla var. acuminata	Pisang Hutan	Manokwari, Papua Barat
34	PA89	Musa acuminata Colla var. acuminata	Pisang Hutan	Manokwari, Papua Barat
35	PA90	Musa acuminata Colla var. acuminata	Pisang Hutan	Manokwari, Papua Barat
36	PA91	Musa acuminata Colla var. acuminata	Pisang Hutan	Manokwari, Papua Barat
37	PA96	Musa acuminata Colla var. acuminata	Pisang Hutan	Manokwari, Papua Barat
38	PN 07	Musa acuminata Colla var. alasensis Nasution	Pisang Runcim	Aceh Tenggara
39			C	00
	PN 11	Musa acuminata Colla var. alasensis Nasution Musa acuminata Colla var. alasensis Nasution	Pisang Keken	Aceh Tenggara
40	PN 18		Pisang Keken	Aceh Tenggara
41	PN 20	Musa acuminata Colla var. alasensis Nasution	Pisang Keken	Aceh Tenggara
42	PN 22	Musa acuminata Colla var. alasensis Nasution	Pisang Keken	Aceh Tenggara
43	PN 23	Musa acuminata Colla var. alasensis Nasution	Pisang Keken	Aceh Tenggara
44	PN 24	Musa acuminata Colla var. alasensis Nasution	Pisang Keken	Aceh Tenggara
45	PN 25	Musa acuminata Colla var. alasensis Nasution	Galuh Rincim	Aceh Tenggara
46	PN 27	Musa acuminata Colla var. alasensis Nasution	Galuh Rincim	Aceh Tenggara
47	PN 28	Musa acuminata Colla var. alasensis Nasution	Galuh Rincim	Aceh Tenggara
48	II 23B#3	Musa acuminata Colla var. bantamensis Nasution	Cau Kole	Jawa Barat
49	II23B#4	Musa acuminata Colla var. bantamensis Nasution	Cau Kole	Jawa Barat
50	II 23B#5	Musa acuminata Colla var. bantamensis Nasution	Cau Kole	Jawa Barat
51	APH 192	Musa acuminata Colla var. bantamensis Nasution	Cau Kole	Jawa Barat
52	APH 193	Musa acuminata Colla var. bantamensis Nasution	Cau Kole	Jawa Barat
53	APH 194	Musa acuminata Colla var. bantamensis Nasution	Cau Kole	Jawa Barat
54	APH 195	Musa acuminata Colla var. bantamensis Nasution	Cau Kole	Jawa Barat
55	APH 196		Cau Kole	Jawa Barat Jawa Barat
		Musa acuminata Colla var. bantamensis Nasution		3
56	IV2B#1	Musa acuminata Colla var. breviformis Nasution	Cau Kole	Jawa Barat
57	IV2B#2	Musa acuminata Colla var. breviformis Nasution	Cau Kole	Jawa Barat
58	IV2B#3	Musa acuminata Colla var. breviformis Nasution	Cau Kole	Jawa Barat
59	IV2B#4	Musa acuminata Colla var. breviformis Nasution	Cau Kole	Jawa Barat
60	IV2B#5	Musa acuminata Colla var. breviformis Nasution	Cau Kole	Jawa Barat
61	PHD25	Musa acuminata Colla var. breviformis Nasution	Cau Kole	Jawa Barat
62	PHD26	Musa acuminata Colla var. breviformis Nasution	Cau Kole	Jawa Barat
63	PSNA02	Musa acuminata Colla var. cerifera Nasution	Cau Kole	Jawa Barat
64	PSNA03	Musa acuminata Colla var. cerifera Nasution	Cau Kole	Jawa Barat
65	PSNA04	Musa acuminata Colla var. cerifera Nasution	Cau Kole	Jawa Barat
66	PSNA05	Musa acuminata Colla var. cerifera Nasution	Cau Kole	Jawa Barat
67	PSNA07	Musa acuminata Colla var. cerifera Nasution	Cau Kole	Jawa Barat
68	PSNA09	Musa acuminata Colla var. cerifera Nasution	Cau Kole	Jawa Barat
69	PNK18b			5
70	PNK18c	Musa acuminata Colla var. flava (Ridl.) Nasution Musa acuminata Colla var. flava (Ridl.) Nasution	Pisang Hutan/Pisang Monyet	Kalimantan Tengah Kalimantan Tengah
			Pisang Hutan/Pisang Monyet	
71	PNK19b	Musa acuminata Colla var. flava (Ridl.) Nasution	Pisang Hutan/Pisang Monyet	Kalimantan Tengah
72	PNK26	Musa acuminata Colla var. flava (Ridl.) Nasution	Pisang Hutan/Pisang Monyet	Kalimantan Tengah
73	PNk27b	Musa acuminata Colla var. flava (Ridl.) Nasution	Pisang Hutan/Pisang Monyet	Kalimantan Tengah
74	PNK28a	Musa acuminata Colla var. flava (Ridl.) Nasution	Pisang Hutan/Pisang Monyet	Kalimantan Tengah
75	PNK42a	Musa acuminata Colla var. flava (Ridl.) Nasution	Pisang Hutan/Pisang Monyet	Kalimantan Tengah
76	PNK43a	Musa acuminata Colla var. flava (Ridl.) Nasution	Pisang Hutan/Pisang Monyet	Kalimantan Tengah
77	PNK43b	Musa acuminata Colla var. flava (Ridl.) Nasution	Pisang Hutan/Pisang Monyet	Kalimantan Tengah
78	PNK46	Musa acuminata Colla var. flava (Ridl.) Nasution	Pisang Hutan/Pisang Monyet	Kalimantan Tengah
79	PNK48	Musa acuminata Colla var. flava (Ridl.) Nasution	Pisang Hutan/Pisang Monyet	Kalimantan Tengah
80	PNK51	Musa acuminata Colla var. flava (Ridl.) Nasution	Pisang Hutan/Pisang Monyet	Kalimantan Tengah
81	PNK84a	Musa acuminata Colla var. flava (Ridl.) Nasution	Pisang Hutan/Pisang Monyet	Kalimantan Tengah
82	PS 104	Musa acuminata Colla var. halabanensis (Meijer) Nasution	Pisang Hutan	Sumatera Selatan
83	PS 105	Musa acuminata Colla var. halabanensis (Meijer) Nasution	Pisang Hutan	Sumatera Selatan
84	PS 107	Musa acuminata Colla var. halabanensis (Meijer) Nasution	Pisang Hutan	Sumatera Selatan
85	PS 108	Musa acuminata Colla var. halabanensis (Meijer) Nasution	Pisang Hutan	Sumatera Selatan
	PS 109	* / /	0	
86		Musa acuminata Colla var. halabanensis (Meijer) Nasution	Pisang Hutan	Sumatera Selatan
87	PS 121	Musa acuminata Colla var. halabanensis (Meijer) Nasution	Pisang Hutan	Sumatera Selatan
88	PS 122	Musa acuminata Colla var. halabanensis (Meijer) Nasution	Pisang Hutan	Sumatera Selatan
89	PS 125	Musa acuminata Colla var. halabanensis (Meijer) Nasution	Pisang Hutan	Sumatera Selatan
90	PS 129	Musa acuminata Colla var. halabanensis (Meijer) Nasution	Pisang Hutan	Sumatera Selatan
91	PS 130	Musa acuminata Colla var. halabanensis (Meijer) Nasution	Pisang Hutan	Sumatera Selatan
92	PS02	Musa acuminata Colla var. longipetiolata Nasution	Pisang Tengkayak	Sumatera Selatan
93	PS04	Musa acuminata Colla var. longipetiolata Nasution	Pisang Tengkayak	Sumatera Selatan
94	PS06	Musa acuminata Colla var. longipetiolata Nasution	Pisang Tengkayak	Sumatera Selatan
		∪ ,		

95	PS07	Musa acuminata Colla var. longipetiolata Nasution	Pisang Tengkayak	Sumatera Selatan
96	PS08	Musa acuminata Colla var. longipetiolata Nasution	Pisang Tengkayak	Sumatera Selatan
			0 0 ,	
97	PS10	Musa acuminata Colla var. longipetiolata Nasution	Pisang Tengkayak	Sumatera Selatan
98	PS11	Musa acuminata Colla var. longipetiolata Nasution	Pisang Tengkayak	Sumatera Selatan
99	PS12	Musa acuminata Colla var. longipetiolata Nasution	Pisang Tengkayak	Sumatera Selatan
100	PS21	Musa acuminata Colla var. longipetiolata Nasution	Pisang Tengkayak	Sumatera Selatan
101	PS25		0 0,	Sumatera Selatan
		Musa acuminata Colla var. longipetiolata Nasution	Pisang Tengkayak	
102	PS26	Musa acuminata Colla var. longipetiolata Nasution	Pisang Tengkayak	Sumatera Selatan
103	PS27	Musa acuminata Colla var. longipetiolata Nasution	Pisang Tengkayak	Sumatera Selatan
104	PS28	Musa acuminata Colla var. longipetiolata Nasution	Pisang Tengkayak	Sumatera Selatan
105	PS29	Musa acuminata Colla var. longipetiolata Nasution	Pisang Tengkayak	Sumatera Selatan
106	APH 40	01	Cau Kole	
		Musa acuminata Colla var. malaccensis (Ridl.) Nasution		Jawa Barat
107	APH 41	Musa acuminata Colla var. malaccensis (Ridl.) Nasution	Cau Kole	Jawa Barat
108	APH 42	Musa acuminata Colla var. malaccensis (Ridl.) Nasution	Cau Kole	Jawa Barat
109	APH 43	Musa acuminata Colla var. malaccensis (Ridl.) Nasution	Cau Kole	Jawa Barat
110	APH 258	Musa acuminata Colla var. malaccensis (Ridl.) Nasution	Cau Kole	Jawa Barat
111	APH 259	Musa acuminata Colla var. malaccensis (Ridl.) Nasution	Cau Kole	Jawa Barat
		, ,		2
112	APH 260	Musa acuminata Colla var. malaccensis (Ridl.) Nasution	Cau Kole	Jawa Barat
113	APH 266	Musa acuminata Colla var. malaccensis (Ridl.) Nasution	Cau Kole	Jawa Barat
114	APH 301	Musa acuminata Colla var. malaccensis (Ridl.) Nasution	Cau Kole	Jawa Barat
115	APH 302	Musa acuminata Colla var. malaccensis (Ridl.) Nasution	Cau Kole	Jawa Barat
116	APH 303	Musa acuminata Colla var. malaccensis (Ridl.) Nasution	Cau Kole	Jawa Barat
		, ,		2
117	PHD-124	Musa acuminata Colla var. malaccensis (Ridl.) Nasution	Cau Kole	Jawa Barat
118	II 17B #1	Musa acuminata Colla var. malaccensis (Ridl.) Nasution	Cau Kole	Jawa Barat
119	II 17B #2	Musa acuminata Colla var. malaccensis (Ridl.) Nasution	Cau Kole	Jawa Barat
120	II 17B #4	Musa acuminata Colla var. malaccensis (Ridl.) Nasution	Cau Kole	Jawa Barat
121	II 17B #5	Musa acuminata Colla var. malaccensis (Ridl.) Nasution	Cau Kole	Jawa Barat
		, ,		2
122	APH 416	Musa acuminata Colla var. malaccensis (Ridl.) Nasution	Cau Kole	Jawa Barat
123	APH 419	Musa acuminata Colla var. malaccensis (Ridl.) Nasution	Cau Kole	Jawa Barat
124	APH 420	Musa acuminata Colla var. malaccensis (Ridl.) Nasution	Cau Kole	Jawa Barat
125	PNK07	Musa acuminata Colla var. microcarpa (Becc.) Nasution	Pisang Saluku	Kalimantan Tengah
126	PNK08a	1 , ,	0	
		Musa acuminata Colla var. microcarpa (Becc.) Nasution	Pisang Saluku	Kalimantan Tengah
127	PNK08b	Musa acuminata Colla var. microcarpa (Becc.) Nasution	Pisang Saluku	Kalimantan Tengah
128	PNK13a	Musa acuminata Colla var. microcarpa (Becc.) Nasution	Pisang Saluku	Kalimantan Tengah
129	PNK13b	Musa acuminata Colla var. microcarpa (Becc.) Nasution	Pisang Saluku	Kalimantan Tengah
130	PNK32a	Musa acuminata Colla var. microcarpa (Becc.) Nasution	Pisang Saluku	Kalimantan Tengah
		1 , ,	0	0
131	PNK32b	Musa acuminata Colla var. microcarpa (Becc.) Nasution	Pisang Saluku	Kalimantan Tengah
132	PNK14a	Musa acuminata Colla var. microcarpa (Becc.) Nasution	Pisang Saluku	Kalimantan Tengah
133	PNK14b	Musa acuminata Colla var. microcarpa (Becc.) Nasution	Pisang Saluku	Kalimantan Tengah
134	APH235	Musa acuminata Colla var. nakaii Nasution	Cau Kole Beureum	Jawa Barat
135	APH236	Musa acuminata Colla var. nakaii Nasution	Cau Kole Beureum	Jawa Barat
136	APH314	Musa acuminata Colla var. nakaii Nasution	Cau Kole Beureum	2
				Jawa Barat
137	PSNAH1a	Musa acuminata Colla var. nakaii Nasution	Cau Kole Beureum	Jawa Barat
138	PSNAH 06	Musa acuminata Colla var. nakaii Nasution	Cau Kole Beureum	Jawa Barat
139	PSNAH 14	Musa acuminata Colla var. nakaii Nasution	Cau Kole Beureum	Jawa Barat
140	PSNAH 15	Musa acuminata Colla var. nakaii Nasution	Cau Kole Beureum	Jawa Barat
141	PAA32	Musa acuminata Colla var. sumatrana (Becc.) Nasution	Pisang Karuak	Sumatera Barat
		· · · · · · · · · · · · · · · · · · ·		
142	PAA48	Musa acuminata Colla var. sumatrana (Becc.) Nasution	Pisang Karuak	Sumatera Barat
143	PAA49	Musa acuminata Colla var. sumatrana (Becc.) Nasution	Pisang Karuak	Sumatera Barat
144	PAA50	Musa acuminata Colla var. sumatrana (Becc.) Nasution	Pisang Karuak	Sumatera Barat
145	PAA69	Musa acuminata Colla var. sumatrana (Becc.) Nasution	Pisang Karuak	Sumatera Barat
146	PAA70	Musa acuminata Colla var. sumatrana (Becc.) Nasution	Pisang Karuak	Sumatera Barat
		· · · · · · · · · · · · · · · · · · ·	e e	Sumatera Barat
147	PAA94	Musa acuminata Colla var. sumatrana (Becc.) Nasution	Pisang Palapah	
148	PAA95	Musa acuminata Colla var. sumatrana (Becc.) Nasution	Pisang Palapah	Sumatera Barat
149	PAA96	Musa acuminata Colla var. sumatrana (Becc.) Nasution	Pisang Palapah	Sumatera Barat
150	PAA107	Musa acuminata Colla var. sumatrana (Becc.) Nasution	Pisang Palapah	Sumatera Barat
151	PAA108	Musa acuminata Colla var. sumatrana (Becc.) Nasution	Pisang Palapah	Sumatera Barat
152	PAA110	Musa acuminata Colla var. sumatrana (Becc.) Nasution	Pisang Palapah	Sumatera Barat
153	PAA190	· · · · · · · · · · · · · · · · · · ·	~ .	Sumatera Barat
		Musa acuminata Colla var. sumatrana (Becc.) Nasution	Pisang Palapah	
154	PAA200	Musa acuminata Colla var. sumatrana (Becc.) Nasution	Pisang Palapah	Sumatera Barat
155	PH 04	Musa acuminata Colla var. rutilifes Nasution	Pisang Cici	Jawa Timur
156	PH 05	Musa acuminata Colla var. rutilifes Nasution	Pisang Cici	Jawa Timur
157	PH 06	Musa acuminata Colla var. rutilifes Nasution	Pisang Cici	Jawa Timur
158	PH 07	Musa acuminata Colla var. rutilifes Nasution	Pisang Cici	Jawa Timur
159	PH 08	Musa acuminata Colla var. rutilifes Nasution	Pisang Cici	Jawa Timur
		v v		-
160	PH 09	Musa acuminata Colla var. rutilifes Nasution	Pisang Cici	Jawa Timur
161	PH 12	Musa acuminata Colla var. rutilifes Nasution	Pisang Cici	Jawa Timur
162	PH 15	Musa acuminata Colla var. rutilifes Nasution	Pisang Cici	Jawa Timur
163	PH 16	Musa acuminata Colla var. rutilifes Nasution	Pisang Cici	Jawa Timur
164	PH 19	Musa acuminata Colla var. rutilifes Nasution	Pisang Cici	Jawa Timur
		· · · · · · · · · · · · · · · · · · ·	e e e e e e e e e e e e e e e e e e e	5
165	PAR 72	Musa acuminata Colla var. tomentosa (K.Sch.) Nasution	Unti Darek	Sulawesi Selatan
166	PAR 73	Musa acuminata Colla var. tomentosa (K.Sch.) Nasution	Unti Darek	Sulawesi Selatan
167	PAR 74	Musa acuminata Colla var. tomentosa (K.Sch.) Nasution	Unti Darek	Sulawesi Selatan
168	PAR 76	Musa acuminata Colla var. tomentosa (K.Sch.) Nasution	Unti Darek	Sulawesi Selatan
169	PAR 78	Musa acuminata Colla var. tomentosa (K.Sch.) Nasution	Unti Darek	Sulawesi Selatan
170	PAR 93	Musa acuminata Colla var. tomentosa (K.Sch.) Nasution	Unti Darek	Sulawesi Selatan
		, ,		
171	PAR 94	Musa acuminata Colla var. tomentosa (K.Sch.) Nasution	Unti Darek	Sulawesi Selatan
172	DAD 100	Musa acuminata Colla var. tomentosa (K.Sch.) Nasution	Unti Darek	Sulawesi Selatan
1/2	PAR 100	Transa della var. romanotta (Taccia) i vacationi		C MART IT COX C CARROLLE

173	PAR 101	Musa acuminata Colla var. tomentosa (K.Sch.) Nasution	Unti Darek	Sulawesi Selatan
174	PAR 103	Musa acuminata Colla var. tomentosa (K.Sch.) Nasution	Unti Darek	Sulawesi Selatan
175	PAR 106	Musa acuminata Colla var. tomentosa (K.Sch.) Nasution	Unti Darek	Sulawesi Selatan
176	III 21A#1	Musa acuminata Colla var. zebrina (v. Houtte) Nasution	Cau Kole Beureum	Jawa Barat
177	III 21A#3	Musa acuminata Colla var. zebrina (v. Houtte) Nasution	Cau Kole Beureum	Jawa Barat
178	III 21A#4	Musa acuminata Colla var. zebrina (v. Houtte) Nasution	Cau Kole Beureum	Jawa Barat
179	III 21A#5	Musa acuminata Colla var. zebrina (v. Houtte) Nasution	Cau Kole Beureum	Jawa Barat
180	III20G#1	Musa acuminata Colla var. zebrina (v. Houtte) Nasution	Cau Kole Beureum	Jawa Barat
181	III20G#2	Musa acuminata Colla var. zebrina (v. Houtte) Nasution	Cau Kole Beureum	Jawa Barat
182	III20G#3	Musa acuminata Colla var. zebrina (v. Houtte) Nasution	Cau Kole Beureum	Jawa Barat
183	III20G#5	Musa acuminata Colla var. zebrina (v. Houtte) Nasution	Cau Kole Beureum	Jawa Barat
184	II23A#3	Musa acuminata Colla var. zebrina (v. Houtte) Nasution	Cau Kole Beureum	Jawa Barat
185	II23B#1	Musa acuminata Colla var. zebrina (v. Houtte) Nasution	Cau Kole Beureum	Jawa Barat
186	II23B#2	Musa acuminata Colla var. zebrina (v. Houtte) Nasution	Cau Kole Beureum	Jawa Barat
187	PA 64	Musa schizocarpa NW Simmonds	Pisang Hutan	Papua
188	PA 66	Musa schizocarpa NW Simmonds	Pisang Hutan	Papua
189	PA 67	Musa schizocarpa NW Simmonds	Pisang Hutan	Papua
190	PA 68	Musa schizocarpa NW Simmonds	Pisang Hutan	Papua
191	PA 69	Musa schizocarpa NW Simmonds	Pisang Hutan	Papua
192	PA 76	Musa schizocarpa NW Simmonds	Pisang Hutan	Papua
193	PA 87	Musa schizocarpa NW Simmonds	Pisang Hutan	Papua
194	PA 92	Musa schizocarpa NW Simmonds	Pisang Hutan	Papua
195	PA 93	Musa schizocarpa NW Simmonds	Pisang Hutan	Papua
196	PA 95	Musa schizocarpa NW Simmonds	Pisang Hutan	Papua
197	PA 103	Musa schizocarpa NW Simmonds	Pisang Hutan	Papua
198	II20C#1	Musa balbisiana Colla	Pisang Klutuk	Jawa Barat
199	II20C#2	Musa balbisiana Colla	Pisang Klutuk	Jawa Barat
200	PHD22	Musa balbisiana Colla	Pisang Klutuk	Jawa Barat
201	PHD97	Musa balbisiana Colla	Pisang Klutuk	Jawa Barat
202	PHD101	Musa balbisiana Colla	Pisang Klutuk	Jawa Barat
203	PHD106	Musa balbisiana Colla	Pisang Klutuk	Jawa Barat
204	P001	Musa balbisiana Colla	Pisang Klutuk	Bali
205	PAR62	Musa balbisiana Colla	Pisang Klutuk	Sulawesi Selatan
206	PAR63	Musa balbisiana Colla	Pisang Klutuk	Sulawesi Selatan
207	II18C#1	Musa balbisiana Colla	Pisang Klutuk Sukun	Yogyakarta
208	II18C#3	Musa balbisiana Colla	Pisang Klutuk Sukun	Yogyakarta
209	I3C#1	Musa balbisiana Colla	Pisang Klutuk Wulung	Yogyakarta

DNA Extraction and Primers

The total DNA was extracted from young leaves by Cetyltrimetylammonium bromide (CTAB) method (Syamkumar et al. 2003) with modification, i.e., using 4% CTAB and an addition of 0.1 g Polyvinylpyrrolidone (PVP) for each reaction. The analyses were conducted with the RAPD method (Williams et al. 1990). Ten selected RAPD primers (OPA-02, OPA-07, OPA-13, OPA-18, OPB-07, OPB-18, OPN-06, OPN-12, OPN-14, OPU-06 (Operon Technology Ltd., USA) and ten selected ISSR (University of British Columbia, Canada), i.e. UBC-811, UBC-814, UBC-815, UBC-822, UBC-823, UBC-826, UBC-834, UBC-835, UBC-843 and UBC-844, were used in this study.

DNA Amplification

PCR reactions for RAPD analyses were conducted at a total volume of 15 μ L, containing 0.2 nM dNTPs; 1X reaction buffer; 2 mM MgCl₂; 25 ng DNA sample; 1 pmole single primer; and 1 unit Taq DNA polymerase (Promega Go Taq Flexy DNA Polymerase)

using Thermocycler (Takara Bio Inc., Japan, Model TP600/TP650) for 45 cycles. The first heating was at a temperature of 94 °C for 2 minutes, then followed by 45 cycles which consisted of 1 minute of denaturation at 94 °C, 1 minute of annealing at 36 °C, and 2 minutes of extension at 72 °C. When the 45 cycles ended, a 5-minute DNA extension at 72 °C and cooling at 25 °C followed. PCR reactions for ISSR analyses were conducted as follows: 5 minutes of denaturation at 94 °C, followed by 30 cycles of 1 minute of denaturation at 94 °C, 45 seconds of annealing at 50 °C, and 2 minutes of DNA extensions at 72 °C. When the 30 cycles were finished, the reaction was terminated at 5 minutes of extension at 72 °C.

Visualization of RAPD and ISSR Bands

Electrophoresis was carried out on 2.0% agarose gel using ATTO mini gel apparatus and was run at 100 volts for 50 minutes. RAPD and ISSR bands were stained using 1X Gel RedTM staining solution (Biotium) for 30 minutes. The bands were then observed under UV light and photographed using a gel documentation system (ATTO).

Data Analysis

Only the clear and visible RAPD and ISSR bands were selected and scored for the presence (1) and absence (0) of a band. Band's size was calculated based on 100 bp plus (Fermentas) DNA marker. Genetic distance was analyzed by Popgene 1.32 (Yeh *et al.* 1997) based on Nei's (1978) unbiased measures of genetic identity and genetic distance. Cluster analysis was performed with the unweighted pair group method with arithmetic averages (UPGMA) based on Nei's (1972) genetic distance using Popgene 1.32 (Yeh *et al.* 1997). The dendrograms produced were viewed with Treeview (Page 1998).

RESULTS AND DISCUSSION

RAPD and ISSR Bands

From a total of 443 RAPD and ISSR bands with sizes ranging from 100-2600 bp, 425 polymorphic bands (95.95%) were produced. The highest number of bands (27 bands) was produced by OPN-12, while the least number of bands (15 bands) was made by UBC-843. The primers of OPU-06, UBC-826, UBC-835, UBC-843, and UBC-844 generated the highest (100%) polymorphic bands. Each primer produced 22.15 bands, with an average of 21.15 polymorphic bands (Table 2). Primer OPN-14 produced the lowest number of polymorphic bands (90.91%). These results suggested that

each wild banana genotype observed had DNA variations.

In this study, more polymorphic bands were produced than those of Mukunthakumar et al. produced 87.5% which polymorphism bands, Das et al. (2018) which produced 53.83% ISSR polymorphic bands, and Lamere and Rao (2015) which produced 85.09% and 90.06% for RAPD and ISSR polymorphic bands, respectively. RAPD is easy, fast and affordable and is widely used for banana diversity studies (Kaemmer et al. 1992; Howell et al. 1994; Bhat & Jarret 1995; Uma et al. 2006; Jain et al. 2007; Poerba & Ahmad, 2010a; Poerba et al. 2012; Poerba & Ahmad 2013; Faure et al. 1993; Pillay et al. 2000, 2006; Lamare & Rao however, provide 2015), **ISSR** higher reproducibility (Bornet & Branchard 2001).

The polymorphic level of arbitrary markers, RAPD and ISSR, is based on the primer sequences and either the position or number of annealing regions in the template sequences (William *et al.* 1990). Therefore, analyses of different genetic properties and markers result in the diversity of polymorphic content. The combined markers of RAPD and ISSR and the more genotypes used in this study were probably the most influential factors that contributed to the high polymorphism. This result showed that the 20 primers were effective in bringing out differences among the wild *Musa* genotypes.

Table 2 Number of amplified DNA bands using 20 primers of RAPD and ISSR of wild Musa acuminata from Indonesia

No	Primer code	Nucleotide sequence (5' - 3')	∑DNA bands	∑Polymorphic bands	(%)	Size (bp)	
1	OPA-02	TGCCGAGCTG	26	25	96.15	100-1500	
2	OPA-07	GAAACGGGTG	22	21	95.45	200-2500	
3	OPA-13	CAGCACCCAC	22	21	95.45	250-2200	
4	OPA-18	AGGTGACCGT	23	22	95.65	250-1600	
5	OPB-07	GGTGACGCAG	21	20	95.24	300-1600	
6	OPB-18	CCACAGCAGT	25	23	92	250-2200	
7	OPN-06	GAGACGCACA	24	23	95.83	200-2400	
8	OPN-12	CACAGACACC	27	26	96.3	200-2600	
9	OPN-14	TCGTGCGGGT	22	20	90.91	300-3000	
10	OPU-06	ACCTTTGCGG	23	23	100	150-2200	
11	UBC-811	GAG AGA GAG AGA GAG AC	22	21	95.45	300-2200	
12	UBC-814	CTC TCT CTC TCT CTC TA	23	22	95.65	350-2000	
13	UBC-815	CTC TCT CTC TCT CTC TG	22	21	95.45	250-2200	
14	UBC-822	TCT CTC TCT CTC TCT CA	22	20	90.91	250-2000	
15	UBC-823	TCT CTC TCT CTC TCT CC	18	17	94.44	300-2000	
16	UBC-826	ACA CAC ACA CAC ACA CC	22	22	100	300-2200	
17	UBC-834	AGA GAG AGA GAG AGA GYT	23	22	95.65	200-1800	
18	UBC-835	AGA GAG AGA GAG AGA GYC	22	22	100	250-2000	
19	UBC-843	CTC TCT CTC TCT CTC TRA	15	15	100	250-2200	
20	UBC-844	CTC TCT CTC TCT CTC TRC	19	19	100	250-2200	
		Total	443	425			

Population Genetic Diversity of *M. acuminata*

Nei's (1973) genetic distances of the 17 populations of M. acuminata ranged from 0.3676 to 0.1634, with 20.42% genetic diversity. The lowest genetic distance was observed between M. acuminata subsp. banksii (from Papua) and M. acuminata var acuminata (from Papua), and between M. acuminata var. flava (from Kalimantan) and M. acuminata var. microcarpa (from Kalimantan), while the highest genetic distance was observed between M. acuminata var rutilifes (from East Java) and M. acuminata var sumatrana (from West Sumatra) (Table 3). Musa acuminata ssp. banksii and M. acuminata var. acuminata both originating from Papua are geographically isolated from the other subspecies or varieties, and M. acuminata subsp. banksii is a preferential autogamous (Carreel et al. 2002). Similarly, M. acuminata var. flava and M. acuminata var. microcarpa that both originated from Kalimantan are isolated from other subspecies or varieties, yet they constitute the same species according to De Langhe et al. (2009). The lower genetic distance among populations in the same geographic region is probably because the isolation drives the evolution of a particular trait with similar genetic properties, in contrast to the distinct environment or geographical condition that resulted in other adaptation patterns and genetic properties.

The 17 populations of M. acuminata exhibited varied genetic properties. The polymorphic loci ranged from 9.93% to 39.73%. It means that genetic variation within each population of M. acuminata varies from the lowest 9.93% (within M. acuminata var. acuminata) to the highest 39.73% (within M. acuminata var. malaccensis). Nei's (1973) gene diversity (h) ranged from 0.041 to 0.1418. Musa acuminata var malaccensis had the highest percentages (39.73%) of polymorphic loci and Nei's (1973) gene diversity (0.2106) among the 17 population of wild M. acuminata; while M. acuminata var. acuminata had the lowest (9.93%) (Table 4). M. balbisiana had the lowest (7.67%) polymorphic loci among 19 populations. The fact that M. balbisiana did not originate from Indonesia but was introduced and naturalized (De Langhe et al. 2009), probably explains why its genetic variation in Indonesia was the lowest. All the 209 samples had na, ne, Nei's gene diversity, and Shannon Information Index values of 1.9594, 1.5277, 0.3126, and 0.4727, respectively (Table 4).

Table 3 Nei's (1973) genetic identity and genetic distance of 19 populations of Musa spp.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	****	0.7744	0.7766	0.6773	0.7369	0.7204	0.7032	0.7509	0.6841	0.7262	0.7616	0.7478	0.7028	0.6738	0.6731	0.7014	0.7127	0.6876	0.6611
2	0.2557	****	0.8366	0.6818	0.7502	0.6872	0.7109	0.7575	0.6933	0.7411	0.7286	0,7650	0.7019	0.7011	0.6906	0.7649	0.7367	0.6982	0.6684
3	0.2528	0.1784	****	0.6587	0.7516	0.7002	0.6765	0.7626	0.6773	0.7037	0.7447	0.7199	0.7127	0.6581	0.6546	0.7482	0.7536	0.6682	0.6481
4	0.3897	0.3831	0.4175	****	0.7094	0.6533	0.6863	0.7035	0.7054	0.6921	0.7198	0.6819	0.7126	0.6571	0.6802	0.6582	0.6836	0.7102	0.6502
5	0.3053	0.2874	0.2856	0.3434	****	0.7564	0.7587	0.7493	0.7272	0.7718	0.7823	0.7257	7.7381	0.7533	0.6966	0.7196	0,8080	0,7230	0.6854
6	0,3280	0.3571	0.3564	0.4258	0.2792	****	0.7059	0.7011	0.6794	0,6870	0.7577	0.6777	0.6793	0.6658	0.6731	0,6840	0.7097	0.6821	0.6423
7	0.3521	0.3413	0.3909	0.3765	0.2762	0.3483	****	0.6955	0.7042	0.7257	0.7662	0.7024	0.7397	0.7062	0.6745	0,6620	0.7648	0.7087	0.6607
8	0.2864	0.2778	0,2710	0.3517	0.2887	0.3552	0.3631	****	0.7056	0.7169	0.7758	0.8306	0.7016	0.7311	0,7110	0.7451	0.7348	0.7362	0.6828
9	0.3797	0.3663	0.3896	0,3490	0.3186	0.3865	0.3507	0.3487	****	0.7296	0.7823	0.6827	0.6658	0.6794	0.6589	0.6986	0.7253	0.6947	0.6527
10	0,3200	0.2997	0.3514	0,3680	0,2590	0.3755	0.3206	0.3328	0.3153	****	0.7458	0.6971	0.6972	0.6606	0.6994	0.6725	0.7376	0.7146	0.6427
11	0.2724	0.3166	0.2948	0.3288	0.2456	0.2775	0.2664	0.2538	0.2455	0.2933	****	0.7496	0.7327	0.7126	0.7268	0.7454	0.7672	0.7702	0.7024
12	0.2906	0.2679	0.3287	0.3829	0.3206	0.3891	0.3533	0.1857	0.3817	0.3609	0.2883	****	0.6969	0.7261	0,7020	0.7425	0.7355	0.7066	0.6804
13	0.3527	0,3540	0.3387	0.3388	0.3036	0.3868	0.3015	0.3543	0.4068	0.3607	0,3110	0.3611	****	0.6954	0.6729	0.6815	0.7442	0.7048	0,6490
14	0.3948	0.3551	0.4184	0,4200	0.2833	0.4067	0.3478	0.3132	0.3866	0.4146	0.3388	0,3200	0.3633	****	0.6313	0.6869	0.7279	0.6663	0.6657
15	0.3958	0.3702	0.4237	0.3854	0.3616	0.3958	0.3938	0.3411	0.4172	0.3575	0.3191	0.3538	0.3962	0.4599	****	0.6735	0,6700	0.6885	0.6651
16	0.3547	0,2680	0.2901	0.4183	0.3291	0.3798	0.4125	0.2943	0.3587	0.3967	0.2939	0.2977	0.3834	0.3755	0.3952	****	0.7266	0,6820	0,6240
17	0.3387	0.3055	0.2829	0.3804	0.2132	0.3429	0.2681	0.3081	0.3211	0.3044	0.2651	0.3071	0.2955	0.3176	0.4005	0.3194	****	0,7140	0.6668
18	0.3746	0.3593	0.4031	0.3422	0.3244	0.3826	0.3443	0.3062	0.3642	0,3360	0.2611	0.3473	0.3499	0,4060	0.3733	0.3827	0.3368	****	0.6917
19	0.4139	0.4028	0.4337	0.4304	0.3778	0.4427	0.4144	0.3815	0.4267	0,4420	0.3533	0,3850	0.4324	0,4070	0.4078	0.4716	0.4052	0.3686	****

Notes: Nei's genetic identity (above diagonal) and genetic distance (below diagonal).

1 = Musa acuminata Colla subsp. banksii (F. Muell.) NW Simmonds (Sulawesi Utara), 2 = Musa acuminata Colla subsp. banksii (F. Muell.) NW Simmonds (Papua), 3 = M. acuminata Colla var. acuminata, 4 = M. acuminata Colla var. alasensis Nasution, 5 = M. acuminata Colla var. bantamensis Nasution, 6 = M. acuminata Colla var. breviformis Nasution, 7 = M. acuminata Colla var. cerifera (Backer) Nasution, 8 = M. acuminata Colla var. flava (Ridl.) Nasution, 9 = M. acuminata Colla var. balabanensis (Meijer) Nasution, 10 = M. acuminata Colla var. longipetiolata Nasution, 11 = M. acuminata Colla var. malaccensis (Ridl.) Nasution, 12 = M. acuminata Colla var. microcarpa (Becc.) Nasution, 13 = M. acuminata Colla var. nakaii Nasution, 14 = M. acuminata Colla var. rutilifes Nasution, 15 = M. acuminata Colla var. sumatrana (Becc.) Nasution, 16 = M. acuminata Colla var. tomentosa (K.Sch.) Nasution, 17 = M. acuminata Colla var. gebrina (v. Houtte) Nasution, 18 = M. schizocarpa NW Simmonds, and 19 = M. balbisiana Colla.

Table 4 Genetic properties of 19 populations of Musa spp. from Indonesia

No	Population	Sample size	na	ne	h	I	Number of polymorphic loci	(%)
1	M. acuminata subsp. banksii (Sulawesi)	6	1.2099	1.1557	0.0855	0.1239	93	20.99%
2	M. acuminata subsp. banksii (Papua)	21	1.2777	1.0511	0.0387	0.0714	123	27.77%
3	M. acuminata var. acuminata (Papua)	10	1.0993	1.0725	0.041	0.0596	44	9.93%
4	M. acuminata var. alasensis	10	1.1174	1.0749	0.043	0.0637	52	11.74%
5	M. acuminata var. bantamensis	8	1.2054	1.1463	0.082	0.1196	91	20.54%
6	M. acuminata var. breviformis	7	1.14	1.1127	0.0603	0.0863	62	14.00%
7	M. acuminata var. cerifera	6	1.1693	1.1147	0.0645	0.0948	75	16.93%
8	M. acuminata var. flava	13	1.2754	1.1773	0.1024	0.1516	122	27.54%
9	M. acuminata var. halabanensis	10	1.1332	1.084	0.0484	0.0719	59	13.32%
10	M. acuminata var. longipetiolata	14	1.1558	1.1061	0.0608	0.0894	69	15.58%
11	M. acuminata var. malaccensis	19	1.3973	1.2458	0.1418	0.2106	176	39.73%
12	M. acuminata var. microcarpa	9	1.1287	1.0884	0.0502	0.0736	57	12.87%
13	M. acuminata var. nakaii	7	1.1986	1.1476	0.0816	0.1183	88	19.86%
14	M. acuminata vax. rutilifes	10	1.1174	1.0984	0.0533	0.0758	52	11.74%
15	M. acuminata var. sumatrana	14	1.1219	1.0813	0.0471	0.0693	54	12.19%
16	M. acuminata var. tomentosa	11	1.1309	1.0725	0.0432	0.0657	58	13.09%
17	M. acuminata var. zebrina	11	1.2483	1.1139	0.0719	0.1129	110	24.83%
18	M. schizocarpa	11	1.1174	1.05	0.0321	0.051	52	11.74%
19	M. balbisiana	12	1.0767	1.0436	0.0257	0.0389	34	7.67%
		209	1.9594	1.5277	0.3126	0.4727	425	95.94%

Notes: * na = Observed number of alleles

Population diversity indexes such as allele frequencies (na and ne), Nei's gene diversity (h), and Shannon's information index (I) define the genome composition of a population. In this study, the observed number of alleles (na) and the effective number of alleles (ne) from combined RAPD and ISSR data were lower than those of other studies (Lamare & Rao 2015; Mukunthakumar et al. 2013). The combination of different markers and genotypes produced an observed diversity at a certain level of alleles; thus, these results are different from those of previous studies. In this study, na and ne values ranged from 1.0767 to 1.3973 and from 1.0436 to 1.072, respectively. Lamare and Rao (2015) used more markers (58) on 25 different genotypes. Nei's (1973) gene diversity within population ranged from 0.057 to 0.1418. Total Nei's (1973) gene diversity was 0.3126. Musa acuminata var malaccensis had the highest percentage of polymorphic loci and Nei's (1973) gene diversity among the 17 populations of wild M. acuminata, with the values of na, ne, h, I and percentage of polymorphism at 1.3973, 1.2458, 0.1418, 0.2106 and 39.73%, respectively. M. acuminata var. acuminata had the lowest percentage of polymorphic loci and Nei's (1973) gene diversity, with the values of na, ne, h, I, and

percentage of polymorphism at 1.0993, 1.0725, 0.0596 and 9.95%, respectively.

Cluster Analysis

Cluster analysis of the combined data of RAPD and ISSR produced a dendrogram which separated the population of M. acuminata (1-17) from M. balbisiana (19), but not from M. schizocarpa (18)(Fig. However, 1). acuminata (carrying A genome) M. M. schizocarpa (carrying S genome) were in the same cluster. This finding may need further study, specifically to identify the marker specified for each genome with more stringent markers such as AFLP (Wong et al. 2001; Opara et al. 2010), SSR (Christelová et al. 2017) or specific locus markers (Volkaert 2011) to resolve the clustering between M. acuminata and M. schizocarpa.

Cluster 1 consisted of 6 populations, namely: 1 M. acuminata subsp banksii (North Sulawesi), 2 (M. acuminata subsp banksii (Papua), 3 M. acuminata var acuminata (Papua), 8 M. acuminata var flava (Central Kalimantan), 12 M. acuminata var microcrapa (Central Kalimantan) and 16 M. acuminata var tomentosa (North Sulawesi). Cluster 2 consisted of 6 populations of 5 M. acuminata var bantamensis, 17 M. acuminata var zebrina, 11 M. acuminata var malaccensis, 7 M. acuminata var

^{*} ne = Effective number of alleles (Kimura & Crow 1964)

^{*} h = Nei's (1973) gene diversity

^{*} I = Shannon's Information index (Lewontin 1972)

cerifera, 10 M. acuminata var longipetiolata, and M. acuminata var nakaii. The other 6 populations (14 M. acuminata var rutilifes, 18 M. schizocarpa, 6 M. acuminata var breviformis, 9 M. acuminata var halabanensis, 15 M. acuminata var sumatrana, 4 M. acuminata var alasensis) were separated within cluster of M. acuminata—M schizocarpa (Fig. 1). The results were different from those of Nasution's study (1991) using morphological characters. Based on morphological characters, M. acuminata was divided into two groups. Group 1 consisted of varieties of alasensis, halabanensis, acuminata, tomentosa, flava, sumatrana. The other group was varieties of nakaii, zebrina, cerifera, longipetiolata, bantamensis, rutilifes, breviformis, malaccensis, and microcarpa. Some of the varieties, such as flava and microcarpa, which were in different morphological groups were in the same cluster (1). Similarly, varieties of halabanensis and rutilifes, which were in different morphological group were also in the same cluster (3).

The different genetic properties observed in wild M. acuminata from Indonesia confirmed that the species is genetically diverse. The wild M.

acuminata collection in this study showed a highly valuable material that needs further studies specifically, on population genetic diversity and trait variation, with subsequent studies on combination with cultivated banana for the banana breeding program. Utilization of more advance molecular marker is essential for future studies on the conservation and preservation of the wild M. acuminata. The variability of M. acuminata in Indonesia is so important and even higher than that of M. acuminata reported in neighboring countries (Pollefeys et al. 2004). The intra-specific variation of Musa acuminata is far more complex than what is known from its subspecies classification and can provide more promising parent forms/cultivars for breeding than had been exploited until now (MusaNet 2016). Studies on a more advanced molecular marker are essential for determining multilocus markers that can correlate alleles between domesticated bananas and their wild relatives (Volkaert 2011). This study is a cornerstone for a better understanding of Indonesian banana genetics, which is useful for banana breeding and conservation programs.

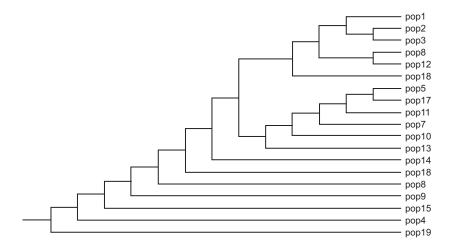


Figure 1 Dendrogram of the 19 populations of Musa spp. from Indonesia based on Nei's genetic distance

Notes: 1 = Musa acuminata Colla subsp. banksii (F. Muell.) NW Simmonds (Sulawesi Utara), 2 = Musa acuminata

Colla subsp. banksii (F. Muell.) NW Simmonds (Papua), 3 = M. acuminata Colla var. acuminata, 4 = M.

acuminata Colla var. alasensis Nasution, 5 = M. acuminata Colla var. bantamensis Nasution, 6 = M. acuminata

Colla var. breviformis Nasution, 7 = M. acuminata Colla var. cerifera (Backer) Nasution, 8 = M. acuminata

Colla var. flava (Ridl.) Nasution, 9 = M. acuminata Colla var. halabanensis (Meijer) Nasution, 10 = M.

acuminata Colla var. longipetiolata Nasution, 11 = M. acuminata Colla var. malaccensis (Ridl.) Nasution, 12 =

M. acuminata Colla var. microcarpa (Becc.) Nasution, 13 = M. acuminata Colla var. nakaii Nasution, 14 =

M. acuminata Colla var. rutilifes Nasution, 15 = M. acuminata Colla var. sumatrana (Becc.) Nasution, 16 =

M. acuminata Colla var. tomentosa (K.Sch.) Nasution, 17 = M. acuminata Colla var. zebrina (v. Houtte)

Nasution, 18 = M. schizocarpa NW Simmonds, and 19 = M. balbisiana Colla.

CONCLUSION

The twenty RAPD and ISSR markers used in this study generated a high percentage of polymorphic (95.95%). bands populations of wild M. acuminata from Indonesia possessed different genetic properties; with genetic distances (Nei 1973) ranging from 0.3676 to 0.1634 and genetic diversity of 20.42%. The highest genetic distance (0.1634) was observed between M. acuminata var rutilifes (from East Java) and M. acuminata var sumatrana (from West Sumatra). Musa acuminata var malaccensis had the highest percentage (39.73%) of polymorphic loci and Nei's (1973) gene diversity (0.2106) among the 17 populations of wild M. acuminata, while M. acuminata var. acuminata had the lowest (9.93% and 0.0596).

Cluster analysis of combined data of RAPD and ISSR produced a dendrogram which separated the population of *M. acuminata* (A genome) from *M. balbisiana* (B genome), but not from *M. schizocarpa* (S genome). The genetic variation of wild *M. acuminata* from Indonesia confirmed that the species is genetically diverse. The samples used in this study are a highly valuable economic material that needs further studies on its population genetic diversity, trait variations and subsequently, on its combination with the cultivated banana for the enhancement of the banana breeding program.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the funding support from the Indonesian Institute of Sciences through its Competitive Programs, and the technical support and assistance of Ms. Herlina from Plant Genetic Laboratory, Research Center for Biology, Indonesian Institute of Sciences.

REFERENCES

- Bartos J, Alkhimova O, Dolezelova M, Langhe E, Dolezel J. 2005. Nuclear genome size and genomic distribution of ribosomal DNA in *Musa* and *Ensete* (*Musaceae*): Taxonomic implications. Cytogenet Genome Res 109:50-7.
- Bhat KV, Jarret RL. 1995. Random amplified polymorphic DNA and genetic diversity in

- Indian Musa germplasm. Genet Resour Crop Evol 42(2):107-18.
- Bornet B, Branchard M. 2001. Nonanchored Inter Simple Sequence Repeat (ISSR) markers: Reproducible and specific tools for genome fingerprinting. Plant Mol Biol Report 19:209-15.
- Carreel F, de Leon DG, Lagoda P, Lanaud C, Jenny C, Horry JP, du Montcel HT. 2002. Ascertaining maternal and paternal lineage within Musa by chloroplast and mitochondrial DNA RFLP analyses. Genome 45(4):679-92.
- Christelová P, Valárik M, Hřibová E, van den Houwe I, Channeliere S, Roux N, Doležel J. 2011. A platform for efficient genotyping in *Musa* using microsatellite markers. AoB Plants: plr024. doi: 10.1093/aobpla/plr024
- Christelová P, De Langhe E, Hřibová E, Čížková J, Sardos J, HušákováInes M, ... Doležel J. 2017. Molecular and cytological characterization of the global *Musa* germplasm collection provides insights into the treasure of banana diversity. Biodivers Conserv 26(4):801-24.
- Čížková J, Hřibová E, Christelová, P, van den Houwe I, Häkkinen M, Roux N, ... Doležel J. 2015. Molecular and cytogenetic characterization of wild *Musa* species. PLoS ONE 10(8):e0134096. doi: 10.1371/journal.pone.0134096
- Das SC, Balamohan TN, Poornima K, van Den Bergh I. 2018. Evaluation of genetic diversity in some banana hybrids using ISSR markers. Int J Curr Microbiol App Sci 7(1):146-57.
- De Langhe ED, Vrydaghs EL, de Maret P, Perrier X, Denham T. 2009. Why bananas matter: An introduction to the history of banana domestication. Ethnobot Res Appl 7:165-77.
- D'Hont A, Denoeud F, Aury J, Baurens F, Carreel F, Garsmeur O, ... Wincker P. 2012. The banana (*Musa acuminata*) genome and the evolution of monocotyledonous plants. Nature 488:213-7.
- Faure S, Noyer JL, Horry JP, Bakry F, Lanaud C, de Lean DG. 1993. A molecular marker-based linkage map of diploid bananas (*Musa acuminata*). Theor Appl Genet 87(4):517-26.
- Fraser-Smith S, Czislowski E, Daly A, Meldrum R, Hamill S, Smith M, Aitken E. 2016. Single gene resistance to Fusarium oxysporum f.sp. cubense race 4 in the wild banana Musa acuminata subsp. malaccensis. ISHS Proceeding of the International ISHS-ProMusa Symposium on Unravelling the Banana's Genomic Potential. Acta Horticulturae 1114. Available from: www.musalit.org
- Häkkinen M. 2013. Reappraisal of sectional taxonomy in *Musa* (Musaceae). Taxon 62:809-13.
- Häkkinen M, Wallace R. 2011. Genetic resources for banana improvement. In: Pillay M, Tenkouano

- A, editors. Banana Breeding: Progress and Challenges. London (UK): CRC Press. p. 41-52.
- Howell EC, Newbury HJ, Swennen RL, Withers LA, Ford-Lloyd BV. 1994. The use of RAPD for identifying and classifying *Musa* germplasm. Genome 37(2):328-32.
- International Plant Genetic Resources Institute-International Network for the Improvement of Banana and Plantain/Centre de Coopération internationale en recherche agronomique pour le développement [IPGRI-INIBAP/CIRAD]. 1996. Descriptors for banana (*Musa* spp.). Rome (IT): IPGRI Press.
- Jain PK, Saini MK, Pathak H, Gupta VK. 2007. Analysis of genetic variation in different banana (*Musa* species) variety using Random Amplified Polymorphic DNAs (RAPDs). Afri J Biotechnol 6(17):1987-9.
- Javed MA, Chai M, Othman RY. 2004. Study of resistance of *Musa acuminata* to *Fusarium oxysporum* using RAPD markers. Biol Plant 48:93-9.
- Jones DR. 2000. Introduction to banana, abaca and enst. In: Jones DR, editor. Disease of Banana, Abaca and Enset. Wallllingford (UK): CABI Publishing, CAB International. p. 1-36.
- Kaemmer D, Afza R, Weising K, Kahl G, Novak FJ. 1992. Oligonucleotide and amplification fingerprinting of wild species and cultivars of banana (*Musa* spp.). Biotechnology 10(9):1030-5.
- Kimura M, Crow JF. 1964. The number of alleles that can be maintained in a finite population. Genetics 49:725-38.
- Lamare A, Rao SR. 2015. Efficacy of RAPD, ISSR and DAMD markers in assessment of genetic variability and population structure of wild *Musa acuminate* Colla. Physiol Mol Biol Plants 21(3):349-58.
- Lewontin RC. 1972. The apportionment of human diversity. Evol Biol:381-98.
- Li L-F, Häkkinen M, Yuan Y-M, Hao G, Ge X-J. 2010. Molecular phylogeny and systematics of the banana family (Musaceae) inferred from multiple nuclear and chloroplast DNA fragments, with a special reference to the genus *Musa*. Mol Phylogenet Evol 57:1-10.
- Liu AZ, Kress WJ, Li DZ. 2010. Phylogenetic analyses of the banana family (Musaceae) based onnuclear ribosomal (ITS) and chloroplast (trnL-F) evidence. Taxon 59:20-8.
- Martanti D, Widyastuti U, Poerba YS, Megia R. 2015. Identification of gene candidate of Nucleotide Binding Site (NBS) from banana *Musa acuminata* Colla var *malaccensis* (Riddl.) Nasution and *Musa*, AAA, cavendish subgroup. Pakistan J Biol Sci 18(3):99-106.

- Mogea JP, Gandawidjaja D, Wiriadinata H, Nasution RE, Irawati. 2001. Rare plants of Indonesia. Bogor (ID): Herbarium Bogoriense.
- Mukunthakumar S, Padmesh P, Vineesh PS, Skaria R, Kumar KH, Krishnan PN. 2013. Genetic diversity and differentiation analysis among wild antecedents of banana (*Musa acuminata* Colla) using RAPD markers. Indian J Biotechnol 12:493-8.
- MusaNet. 2016. Global strategy for the conservation and use of *Musa* genetic resources (B. Laliberté, compiler). Montpellier (FR): Bioversity International.
- Nasution RE. 1991. A taxonomic study of the species *Musa acuminata* Colla with its intraspecific taxa in Indonesia. Memoirs of the Tokyo University of Agriculture 32:1-122.
- Nei M. 1972. Genetic distance between populations. Am Nat 106(949):283-92.
- Nei M. 1973. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321-3.
- Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583-90.
- Nybom H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13(5):1143-55.
- Nybom H, Bartish IV. 2000. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evol Syst 3:93-114.
- Opara UL, Jacobson D, Al-Saady NA. 2010. Analysis of genetic diversity in banana cultivars (Musa cvs.) from the South of Oman using AFLP markers and classification by phylogenetic, hierarchical clustering and principal component analyses. J Zhejiang Univ Sci B (5):332-41. doi: 10.1631/jzus.B0900310
- Page RDM [Internet]. 1998. TreeView (Win 32). Glasgow (UK): bio.tools; [cited 2017 March 31]. Available from:
 http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
- Perrier X, De Langhe E, Donohue M, Lentfer C, Vrydaghs L, Bakry F, ... Denham T. 2011. Multidisciplinary perspectives on banana (*Musa* spp.) domestication. Proceedings of the National Academy of Sciences 108(28). p. 11311-8.
- Pillay M, Nwakanma DC, Tenkouano A. 2000. Identification of RAPD markers linked to A and B genome sequences in *Musa* L. Genome 43(3):763-7.
- Pillay M, Ogundiwin E, Tenkouano A, Dolezel J. 2006. Ploidy and genome composition of *Musa*

- germplasm at the International Institute of Tropical Agriculture (IITA). Afr J Biotechnol 5(13):1224-32.
- Poerba YS, Ahmad F. 2010a. Keragaman genetic kultivar pisang diploid (AA) koleksi Cibinong Science Center berdasarkan marka RAPD dan ISSR [Genetic variation of diploid banana cultivars (AA) Cibinong Science Center Collection based on RAPD and ISSR markers]. Biota 15(3):308-15.
- Poerba YS, Ahmad F. 2010b. Genetic variability among 18 cultivars of cooking bananas and plantain by RAPD and ISSR markers. Biodiversitas 11(3):118-23.
- Poerba YS, Ahmad F. 2013. Analisis keragaman genetik Musa balbisiana Colla berdasarkan marka RAPD dan ISSR [Genetic variation analyses of Musa balbisiana Colla based on RAPD and ISSR markers]. Berita Biologi 12(2):259-67.
- Poerba YS, Ahmad F, Witjaksono. 2012. Persilangan pisang liar diploid *Musa acuminata* Colla var *malaccensis* (Ridl.) Nasution sebagai sumber polen dengan Pisang Madu tetraploid [Hybridization of wild diploid *Musa acuminata* Colla var *malaccensis* (Ridl.) Nasution as pollen source with tetraploid Pisang Madu]. Jurnal Biologi Indonesia 8(1):181-96.
- Pollefeys P, Sharrock S, Arnaud E. 2004. Preliminary analysis of the literature on the distribution of wild *Musa* species using MGIS and DIVA-GIS. Rome (IT): IPGRI Press.
- Raboin L, Carreel F, Noyer J, Baurens F, Horry J, Bakry F, ... Lagoda PJL. 2005. Diploid ancestors of triploid export banana cultivars: Molecular identification of 2n restitution gamete donors and n gamete donors. Mol Breed 16(4):333-41.
- Sardos J, Perrier X, Doležel J, Hřibová E, Christelová P, van den Houwe I, ... Roux N. 2016. DArT whole genome profiling provides insights on the evolution and taxonomy of edible banana (*Musa* spp.). Ann Bot 7:1269-78.
- Simmonds NW, Shepherd K. 1955. Taxonomy and origin of cultivated bananas. Bot J Linn Soc 55:302-12.
- Sperisen C, Bucher U. 1998. Cloning of random amplified polymorphic DNA (RAPD) to generate codominant genetic marker. In: Karp A, Issac PG, Ingram D, editors. Molecular Tools for Screening Biodiversity. London (UK): Chapman & Hall. p. 217-22.

- Syamkumar S, Lowarence B, Sasikumar B. 2003. Isolation and amplification of DNA from rhizomes of tumiric and ginger. Plant Mol Biol Rep 212:171a-171e. Available from: http://dx.doi.org/10.1007/BF02774243
- Sutanto A, Sukma D, Hermanto C, Sudarsono S. 2014. Isolation and characterization of resistance gene ana-logue (RGA) from *Fusarium* resistant banana cultivars. Emirates J Food Agric 26(6):508-18.
- Uma S, Siva SA, Saraswathi MS, Manickavasagam M, Durai P, Relvarajan S, Sathiamoorthy S. 2006. Variation and intraspecific relationships in Indian wild *Musa balbisiana* (BB) population as evidenced by random amplified polymorphic DNA. Genet Resour Crop Evol 53(2):349-55.
- Volkaert H. 2011. Molecular analysis reveals multiple domestications of edible bananas. Proceedings of the International ISHS-ProMusa Symposium on Global Perspectives on Asian Challenges. Acta Horticultura 897.
- Welsh J, McClelland M. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucl Acids Res 18:7213-8.
- Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18(22):6531-5.
- Wong C, Kiewj R, Loh JP, Gan LH, Set O, Lee SK, ... Gan YY. 2001. Genetic diversity of the wild banana *Musa acuminata* Colla in Malaysia as evidenced by AFLP. Ann Bot 88:1017-25.
- Wong C, Kiew R, Argent GCG, Set O, Lee SK, Gan YY. 2002 Assessment of the validity of the sections in Musa (Musaceae) using AFLP. Ann Bot 90:231-8.
- Yeh FC, Yang RC, Boyle T, Ye YZ, Mao JZ [Internet].

 1997. POPGENE: The user-friendly shareware for population genetic analysis. Edmonton (AB, CA): Molecular Biology and Biotechnology Centre, University of Alberta; [cited 2017 April 17].

 Available from: http://www.ualberta.ca/~fyeh/
- Zietkiewicz E, Rafalski JA, Labuda D. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20(2):176-83.