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ABSTRACT

Intensification of biofuel resources is urgentlyeded considering decreased availability of
world’s fossil fuel. Palmyra palmBprassus flabelliféris highly potential to be developed as
bioethanol source regarding the high sucrose coriterits nira. It was observed that nira
produced in dry season is sweeter than that ity season, which presumed to be influenced by a
difference in expression level of sucrose-relatedeg during the two seasons. Study of Sucrose
Synthase (SUS) gene of palmyra are therefore medjyrior to study of the gene expression.
Palmyra SUS gene sequence is currently unavailableenBank, thereby pair of primers was
designed from highly conserved region of SUS pnsteamong monocots. A 1866 bp partial
cDNA fragment of SUS putative gene has been suaktgs$olated from RNA of the young
leaves ofB. flabellifer BLASTn and BLASTp aligments showed that eitlB#EUSCDNA or
BfSUS polypeptide has high similarity with SUS cDNWd proteins from diverse plant species
with the highest similarity shown Blulipa gesnerianaThe phylogenetic tree showed that SUS
protein sequences of monocot species were distalgtgrouped and splitted from those of dicot
species. The BfSUS was clustered in monocot gralthpugh not specifically grouped with
particular monocot species. NevertheleBs,flabellifer showed nearest genetic distance with
Tulipa gesnerianaand Oncidium cv.'Goldiana’ Characterization of BfSUS polypeptide using
Geneious 4.6.2 indicated the presence of sucrashase (SUS) and glycosyl transferase (GT)
domains, four putative UDP-glucose binding pockeithin the GT domain, and a calcium-
dependent Ser/Thr protein kinase binding site withe SUS domain. These domains and motifs
are highly conserved in SUS proteins across plaatiss, confirming that the cDNA fragment
obtained in this study is very likely cDNA encodegrose synthase B flabellifer.

Keywords:Borassus flabellifemira, sucrose, sucrose synthase, SUS domain, GT domain,
Palmyra palm.

INTRODUCTION

Palmyra Borassus flabelliféris apalmaespecies with high potency to be developed as eceou
of bioethanol. The plant is typically grown in dayeas in strictly seasonal tropical or subtropical
climate. The palmyra palm is known to be very adapin dry areas with only 500-900 mm
annual rainfall (Flach and Rumawas, 1996). The npmoduct of palmyra is the sweet liquid
produced from its inflorescence, calleila, or locally known asuak (Fox, 1977). The nira of
palmyra palm contains 17-20% dry matters comp$esicrose, amino acids, proteins, vitamins,
and other essential minerals. SucroseH({€s) that constitutes 13-18% per litaira is the
principal material in the production of bioetharbtough the process of fermentation. It was
observed in East Nusa Tenggara, particularly inofiemd Rote islands, thaira tapping is more
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preferable in dry season rather than in rainy seaBeside the safety reason, it is probably

because palmyra nira in dry season is sweeterithainy season. It becomes interesting to study
whether this phenomena is solely caused by highl lefwater contained in the nira, by a higher

rate of photosynthesis occurred in dry seasont ba$ something related with sucrose genes
expression level. A preliminary study on sucroskteel gene expressed in palmyra palm is
therefore needed to answer the question.

Sucrose is the most important plant disacchartds;the principle form by which photosynthetic
product is transported throughout plant tissuemftbe source photosynthetic tissue to the sink
non-photosynthetic tissues (Bush, 1999). This disaide consists of one molecule of glucose
and one molecule of fructose that is bounded biyeogidic bond (Lodisket al, 1999). Many
enzymes involved in metabolism of sucrose. Theedbselated enzymes are sucrose-synthase
(SUS: EC 2.4.1.13), sucrose phosphate synthase: (BES2.4.1.14), sucrose-6-phosphate-
phosphatase (SPPase: EC 3.1.3.24), and invert&®&.gE1.26). The reversible and irreversible
reactions of sucrose hydrolysis are catalyzed, easmely, by SUS and invertase. The
biosynthesis of sucrose is catalyzed by the setplamttion of SPS and SPPase (Winter and
Huber, 2000). Sucrose can be synthesized from kexmsophosphates by SUS or SPS. In the
case of SUS, thim vivo sucrose concentrations are always much higher finatose or UDP-
glucose, resulting in reaction that is essentiallyays towards the direction of sucrose cleavage.
Invertase, on the other hand, only catalyzes thavelge of sucrose into glucose and fructose.

All enzymes catalyze transfer of sugar moietiesnfractivated donor molecules to specific
acceptor molecules by forming glycosidic bonds @essified in the glucosyltranferase (GT)
family of enzyme. Sucrose synthase (EC 2.4.1.13p ikey enzyme involved in sucrose
metabolism, included in the GT4 family regardstsorole in transferring the glucose from UDP-
glucose to fructose molecule to form sucrose orgirerse, hydrolyze the sucrose into glucose
and fructose. SUS enzyme plays significant rolfood storage of many plants, either in the form
of starch or sugar (Bauwet al, 2004). SUS was shown to control the mobilizatbsucrose into
various pathways that important for the metabdaltoyctural, and storage functions of the plant
cell. Phloem-loading, a process by which sucroseassported from photosynthetic to non-
photosynthetic tissues, is facilitated by SUS. titlon of SUS-encoding genes had shown
significant reduction in sucrose import capacityfloem tissues, thereby causing less sucrose
content in tomato fruit (D’Aouset al, 1999). Conversion of sucrose to UDP-glucose that
catalyzed by SUS provides substrate for cell wadsynthesis and starch synthesis in plant
storage organs (Suwet al, 1992; Zrenneet al, 1995; Dejardiret al, 1997; Hendrik, 1990). SUS
activity also associated with development of noslitelegume plants and in regulation of apical
meristem function (Craigt al, 1999). Studies on SUS-encoding genes in manyt glaecies
revealed thain vitro environmental conditions, such as light, tempeeatand water availability
have a significant influence on the expression dS®ncoding genes. Palmyr. (flabellifer)
which has higher sugar content in dry season thamet season, probably reflects a likewise
relation.

SUS genes have been isolated from various stardhsagar-storing plants, such as citrus
(CitSUSAand CitSUS2 (Komatsuet al, 2002), sugarcane (Kumat al, 2007), rice (Wangt

al., 1992), maizeuslandShlgene) (McCartyet al, 1986), wheat (Marangt al, 1988), cotton
(Ruanet al, 2003), tomato (Sust al, 1992), and potato (Zrennet al, 1995).The enzyme is
found in all plant tissues but is highly exprespadticularly in sink tissues (Baugt al, 2004).
According to those studies, the full length SUSegbias in average 4970 bp length, while its
cDNA length is only about half of it, ranging fro2400 to 2500 bp. This research was aimed to
study the characteristic of SUS geneBinflabellifer. A comprehensive knowledge of the SUS
gene characteristics is an initial requirementttmls its expression level, and further to conduct
manipulation or control of those genes, which eesdfforts to enhance the productivityRf
flabellifer as a potential source of sugar and bioethanol.
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RESULTS AND DISCUSSION
RNA Isolation from Borassus flabellifer

Total RNA of B. flabelliferwas isolated from the young leaves of 35-40 yeltsplants. Young
leaves was chosen as it was reported that SUS gemesmmonly expressed in newly developed
tissues that require supply of either sucrose orose derived-compounds (Kurmetral, 2007).
The results of five methods tested for RNA isolatitom B. flabelliferis summarized in Table 1.
The modified method of Aptt al (1995) resulted in good quality of RNA althoudjte tpurity
and quantity were rather low. The RNA isolation waest accomplished by using TB[°
Reagent (Invitrogen). The reagent, a mono-phadigiso composed of phenol and guanidine
isothiocyanate, is an improvement to the single-SRNA isolation method developed by
Chomczynski and Sacchi (1987). This method sucakgsfenerated two distinct bands of 18s
and 28s ribosomal RNA that were clearly occurred%h gel electrophoresis (Figure 1), which
indicated a good RNA quality. The RNA yield wasatelely high, 160Qug/ml, with low protein
contamination as shown by the ratio 1.62. We nthiatithe success in obtaining high RNA yield
from Borassudeaves is greatly determined by the finest powkat could be recovered from the
leaves tissue.

Reverse Transcription- PCR

A total cDNA from the young leaves &. flabellifer were obtained by cDNA synthesis. They
then used as template for the next PCR reactioa. artmealing of SUS-spesific primers to the
target cDNA were best achieved in temperature 58%Gwell, 2 mM of Mg" and 1.5ug/50 ul of
template cDNA were found to be the most suitableceatration for the PCR mix. Total 30
cycles of amplification using the gene specificmmis, SSFw and SSRv, has successfully
produced a single fragment of 1866 bp that wasctkxdeén 1% agarose gel (Figure 2). According
to the expected product size, this 1866 bp fragmexst predicted as the target fragment of the
SUS gene.

Cloning of SUS Putative Gene and Transformation o. coli

Prior to sequencing reaction, the SUS putativenfiextf is purified from the agarose gel and then
cloned into a plasmid vector, pGEN easy (PROMEGA), which then delivered to E. coli
strain DHm. E. coli cells that had been transformed were able to growhe ampicilin-
containing medium. Transformed cells containing Sg&pe fragment were selected by blue-
white screening method. TransformationEofcoli strain DHS with pGEM®-T containing SUS
fragment resulted in blue and white colonies grosritthe ampicillin contained-LB media.

Plasmid Isolation and Confirmation of Gene Insertiam

Plasmid isolation from th&. coli white colony and subsequent restriction cut ugiagicular
restriction enzymes are purposed to confirm thegree of the SUS gene fragment within the
plasmid ofE. coli. When cut withEcoR| the plasmid produced two unexpected fragments, +
1300 bp and + 500 bp, instead of 1866 bp (FigujelBaas presumed that the SUS fragment of
B. flabellifer has arEcoRlrestriction site within its sequence, thereby pieEt shorter fragment
than expected. It was found later that the sequeh&UJS gene oB. flabellifer does have the
recognition site foEcoRI The plasmid was then cut with another endonueleagymeNotl. As
expected, cutting withlotl generated a single 1866 bp fragment (Figure 3k fEsult indicated
that the SUS gene fragment had been successfabiyted into the pGERT easyplasmid.

PCR screening with SP6 and T7 primers was furtbedacted to prove the presence of SUS
fragment within the multiple cloning sequence (M@&jion in the plasmid. Those two primers
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flank the MCS region in the pGEMT easy plasmid. As expected, a +1995 bp fragmexg w
occurred (Figure 3c). This length corresponds &lémgth of the SUS fragment, 1866 bp, plus
129 bp lengths of the SP6 and T7 MCS region.

Sequencing and Characterization of SUS Putative Gerand Polypeptide

Two steps of sequencing were required since SUS8tipatfragment oB. flabellifer, further
stated aBfSUS is relatively long for a single reading by thejgsencer system. The SP6 and T7
primers were used in the former sequencing, foltbtve specific internal primers to read the gap
sequence within the fragment. The later primersewdgsigned from the read of the former
sequence. Using Geneious 4.6.2 program, an ovexdamgading occurred from those two steps of
sequencing, thus finally assembly the whole sequehtheBfSUSputative gene fragment. The
assembledBfSUS fragment was trimmed from pGENI vector region by using VecScreen
program Wwww.ncbi.nim.nih.goy, followed by determination of SSFw and SSRv prsne
annealing region. The final constructionBfSUSpartial gene, which total length is 1866 bp, was
successfully obtained (Figure 4).

The sequence dfSUSputative gene was first analyzed by BLASTn progi@ttschul et al,
1997) to figure out the similarity level &fSUSputative gene with othe8USgene sequences
recorded in the GenBank. The percentage of iddrgites and query coverage indicated that
BfSUSputative gene shares quite high similarity, 70-8%0.6%, withSUSgenes from various
monocots. Thus, confirming that the isolated 186@EUSfragment is most likely a sucrose
synthase gen&fSUSsequence shows the highest similarity v@8thSgenes off ulipa gesneriana
(80.6%), followed byX. mokara(78.8%), Potamogeton distinctu$/8.7%), Oncidium sp.cv
Goldiana(78.6%), andBambusa oldham(j78.5%).

Translation ofBfSUScDNA sequence resulted in BfSUS polypeptide secgi@onsists of 622
amino acids (Figure 5). TH&LASTpprogram showed th&fSUSpolypeptide sequence is highly
similar with SUS protein sequences of many plardécEs, ranged from 78.3 % to 87.5%,
confirming that the BfSUS gene expresses SUS profEne highest similarity, 87.5%, are
showed byTulipa gesnerianaa Liliaceae plant widely known agulip, and Oncidium cv
‘Goldiana’, a genus that contains about 330 speafesrchids from theOrchidaceaefamily.
Oryza sativa(86.8%),Bambusa oldhami{86.5%),Zea mayg86.2%), and other monocots also
showed high similarity.

In order to elucidate relationship between BfSU&ftiue protein and SUS proteins from other
species, and between monocot and dicot specidsjlagenetic tree is generated using Neighbor-
Joining method (Figure 6). The following things dae interpreted from the phylogenetic tree.
First, the similarity of SUS polypeptide sequenteértain taxonomic group tends to be higher
than another group. The similarity of SUS among aoonh species, for instance, is distinctively
higher than those of dicot species. This also sddwespecies coming from the same genus, for
instance, betweeBolanum tuberosumndSolanum lycopersicunBecondB. flabelliferis shown

to be clustered with the monocot group, although specifically grouped with particular
monocot species. It is however shown tBatassus flabellifelhas the nearest genetic distance
with Tulipa gesnerianaAlthough these two species live in distinctivdifferent climate regions,
presumably they both evolve similar mechanism tpado osmotic stress in their surroundings,
probably by accumulating sucrose. In water stremsditions, plants are able to keep their
osmotic gradient lower than their surrounding bguaaulating more solutes, including sucrose,
in their tissues, thereby preventing loss of water.

Multiple sequence alignment of SUS polypeptidescaigtd two main domains that typically
occurred in all plant species. Those armuarose synthasgomain located upstream toward the
N-terminal and alucosyltransferaselomain that is located downstream towards therQitel
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of the protein. These domains differs SUS from iotiigcosyltransferase enzymes. Usjsigam
database, it was shown that those two domains ararred in theBfSUSpolypeptide albeit in
partial length. The moiety of sucrose synthase glndosyltransferase domain is found toward
the N and C-terminal region, respectively, of B&USpolypeptide. The overlapped region
between these domains is spanned from Asn283 &bSeDespite found to be highly conserved
among plant species, the structural and functigitgls and motifs within sucrose synthase
domain are still unrevealed yet. Instead, four figefunctional motifs have been reported for the
second domain, the glycosyl transferase.

It is known that structure of a protein determite function. Therefore, function of a protein
could be deduced by comparing protein sequencessandtures with homolog proteins of
known function. Similar motifs between two proteigenerally will have same function,
especially when they are homolog (Hortehal, 2006). Functional motifs within thBfSUS
polypeptide were elucidated by finding functionahserved motifs within other enzymes of GT
family which had been previously annotated. Busttoat al (2004) had successfully isolated
and crystallized another GT family enzyme frahgrobacterium tumefacienghe Glycogen
Synthase (GS). GS catalyses the synthesis ofuth@l-glucose backbone in the reaction of
glycogen bhiosynthesis. This enzyme possesses th&dalain, a domain also found in SUS
enzyme, with some annotated motifs within it. Aciog to homolog motifs in GS (Buschiazzo
et al, 2004), four functional motifs predicted as uesiiphosphate (UDP)-binding pockets were
detected in the BfSUS polypeptide.

The first putative UDP binding pocket found in BfSiolypeptide is Gly169, a residue located
in a glycine rich motif, 166-DTGGQ-170 (Figure ‘Huber and Huber, 1996; Buschiazzoal
2004). The Glycine (G) residue is predicted to alyecontact with phosphate group of UDP
molecule that binds to SUS protein. Buschiaetoal (2004) discovered that, in the close
conformation of the GS protein, the glycine resilirethe KXGGL motif come into contact with
the phosphate groups of UDP. This role had beeartegp also in the GS dEscherichia coli
(Furukawaet al, 1993). They reported that only the glycine resglbut not the basic side chain
appear to be essential for GS enzymatic activihe DTGGQ motif was found to be conserved
in sucrose phosphate synthase (SPS), another meofib&T family, which functioned as
fructose-6-P binding site (Huber and Huber, 1996).

The three subsequent UDP-putative binding pocket®fSUSpolypeptide are 444-MAR-446
residues, N520, and T546 (Figure 8 and 9). It whseoved that the MAR motif within the
BfSUS polypeptide is located at the C-terminal efid B-strand (Figure 8), a pattern that is also
occurred in ISR motif of GS polypeptide, albeitdifferent number of-strand. This probably
reflects their similar role. It was observed tha guanidinium group of R299, in GS, interacts
with the phosphate group of ADP via a hydrogen md@Buschiazzeet al, 2004). The MAR
residues of BfSUS polypeptide thereby suggestdainaing site for phosphate group of UDP via
a hydrogen interaction. The Asn520 (N520) motiB&8US polypeptide is predicted to bind with
the adenine ring of the UDP molecule. According®, the carbonyl group of protein backbone
in Asn520 may be interacted with atom N6 of therdwke ring of UDP molecule via a weak
hydrogen interaction. The last putative UDP bindpugket, the T546 was suggested to bind
ribose sugar of UDP molecule. The side chain of6T&dy interact via hydrogen bond with O
atom of the ribose sugar.

The last conserved region of SUS protein thatss &und inBfSUSpolypeptide is the Serl70
putative phosphorylation site. This essential si@s found within a typical serine residue
containing- motif, ‘RHLSS’, which lay between Argl€éand Serl7l. In the partial BfSUS
polypeptide this motif is located between Arg30 &#®er34 (30-RHLSS-34). This motif was
firstly detected inZea mayssUSprotein, spanned from Argl159 to Ser163 (Hamtiral, 2003).
This motif was also found i®@ryza sativa Saccharum officinarunfR159 to S163)Bambusa
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oldhamii Triticum aestivum(R167 to S171), anf@iulipa gesneriangdR161 to S165). Hardiat al
(2003) reported that SUS protein &8a mayds phosphorylated by calcium-dependent protein
kinases (CDPKs) at the Ser170 residue, within tHESS motif, in addition to Serl5 (Asamd

al., 2002). Serl5 was reported as a major phosphianylaite that affects cleavage activity and
membrane association, whereas Serl70 is a min@ppboylation site that may trigger enzyme
degradation via the ubiquitin/26S proteasome (Qial, 2007). Since phoshorylation of Ser170
is important for enzyme degradation but not diseictyolved in the catalytic activity of SUS, this
site is suggested as one of the allosteric sitéseoénzyme.

Those all results confirm that the isolated 18660bBfSUSgene fragment is most likely the
sucrose synthase- encoding gendirflabellifer that encodes SUS protein. Further expression
study however is required to prove that B8£USgene actually expresses sucrose synthase
protein inB. flabellifer. The sequence of partiBfSUShas been submitted to the GenBank with
accession numbé& Q265926

MATERIALS AND METHODS
Plant Material

Young leaves were picked from the apical shoot 43 years age-plant of Palmyra palm
(Borassus flabellifer grown in Lasiana shore area in Kupang, East Nieaggara. Leaves
samples were cleaned, wrapped, and immediatelgdtorcold condition before being taken to
Bandung. The whole processes of sampling were ditheRNase-free standard work procedure.
Leaves samples were then frozen in liquid nitroged were stored in -80 refrigerator before
RNA isolation. All the laboratory works took platethe Laboratory of Genetics and Molecular
Biology, in SITH-ITB, Bandung.

RNA Isolation

Total RNA of B. flabelliferwas extracted from the fresh young leaves thaéwesviously stored

in -80°C. All chemicals were diluted in RNAse-freamter and prepared using RNAse-free
equipments. All equipments were formerly treatethwidietylpyrocarbonate (DEPC) before use.
Grinding equipment, such as mortar, pestel, arabers were chilled before use, either by storing
in -80°C or by soaking in liquid nitrogen.

Five protocols have been tested to optimize RNAatsmn method from young leaves 8f
flabellifer. Those are method of Se&t al (2002), method of Khemvong and Suvachittanont
(2005), modified-method of Amt al (1995), TRIzol-modified (I) method, and TRIzol dified

(IN method (Invitrogen). Quality of RNA is detern@d by absorbance ratio in 260 nm and 280
nm UV light in the range of 1.80 — 2.00 which iratied low contamination of protein.
Appearance of two typical ribosomal RNA bands, B8&l 28s, in electrophoresis gel also
indicated good quality of RNA. The quantity of RN#as determined by RNA yieldi§) per
total solution volume (ml).

Primer Design

Sequence oB. flabellifer SUS gene is currently unavailable in the GenBah&reby pair of
primer was designed from highly conserved regionStfS proteins among monocot plant
species. Sucrose synthase protein sequend@syaé sativaZea maysSaccharum officinarum
and other monocots, were accessed from NCBI GenRit&base www.ncbi.nim.nih.goy.
Multiple sequence alignment of SUS proteins waglaoted using Clustal X software. The most
conserved regions in SUS proteins among those espegere chosen for primer sequence
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determination. Primer sequences were deduced fiosetregions by choosing a particular group
of species whose cDNA sequence is highly consefVbis was accomplished by BioEdit and
CodeHop programs. Nucleotide number 412 to 4385WSEgene ofZea mayswvas chosen as
forward primer; while reverse primer was taken frooctleotide number 2277 to 2252. Primer
physical characteristics were measuredslgyna-genosygrimer calculator. Specificity of both
primer pairs were tested by nucleotide BLAST pragréAltschul et al, 1997). The chosen
primer sequences showed eligible characteristicg] aore importantly, exhibited high
specificity for SUS gene (Table 2).

Reverse Transcription-PCR

Isolation of sucrose synthase (SUS) gene fidmflabellifer was accomplished btwo step
reverse-transcription polymerase chain reactionF/CR) method. In the first step, total cDNA is
synthesized from the total RNA by usiSgiperscript Il cDNA synthesis Kinvitrogen). In the
second step, PCR amplification using SUS gene-fpgrimers was carried out to specifically
amplify fragment of SUS gene from the previousblased cDNA.

Total cDNA synthesis

Total cDNA synthesis oB. flabellifer was conducted usin§uperscript 1l cDNA synthesis kit
(Invitrogen). Composition of each component in cDBlhthesis reaction is described in Table 3.
All solutions are diluted in DEPC-treated deionizeater. All steps were carried out according to
RNAse-free standard work procedure to avoid or miné degradation of the RNA.

A master mix solution was prepared by mixing buffar with MgCl, Dithiothreitol (DTT), and
RNase ouf™ recombinant RNase. Separately, RNA sample wasdwiith oligo dT primer and
dNTPs prior to five minutes incubation in 65°C d@hen one minute in ice. The master mix was
then added to the RNA sample mixture and theneatilutith DEPC-treated water to 20final
volume. This final mixture was incubated for twonuies in 42C for primer annealing.
Superscript! - Reverse Transcriptase was subsequently adadedhé mixture, gently
homogenized, and then incubated for 50 minutes 2?C4for complete reaction of cDNA
synthesis. The reaction was terminated by 15 ménirteubation in 70°C. To eliminate any
remaining RNA strands in the cDNA solution, RNase#re added to the solution and then
incubated in 3%C for 20 minutes. Total cDNA d. flabellifer young leaves was obtained at the
end of this step.

PCR Amplification for Isolation of SUS gene

A standard PCR amplification technique was condud@lowing the cDNA synthesis to
specifically isolate the SUS gene. OptimizatiorP@R profile, especially annealing temperature,
was carried out to find the best condition thatofagpecific amplification of the SUS gene
fragment. A range of annealing temperature, fro®CAto 55°C, was tested. Concentration of
cDNA template, ranging from 0.5 to & /50 ul, and Md", ranging from 1 to 2.5 mM, were
tested as well to obtain best fragment of the taggae. The PCR reaction was carried out using a
Long PCR Enzyme Miproduct (FERMENTAS). Composition of the PCR mixtus described

in Table 4.

Gene Cloning and Transformation ofE. coli

The product of RT-PCR was observed by electropl®resing 1% agarose gel. Detected SUS
fragment was purified from the agarose gel and ttlened to the pGEM-T Easy® vector by
employing T4 ligase enzyme. To amplify the SUS finagt, the recombinant plasmids were
subsequently delivered into bacterial cell E$cherichia colistrain DH& using heat-shock
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treatment. The transformed cells Bf coli that contain recombinant plasmid were selected
through screening of blue-white colony. The transied cells were cultured for 16 hours in
Luria-Bertany (LB) media containing 0.1 pgampicillin. The plasmids DNA of the transformed
cells were then extracted by alkaline lysis meti®dmbrooket al, 1989). Insertion of SUS
fragment into plasmid was confirmed by cutting ghasmid with two endonuclease restriction
enzymesEcoRlandNotl.

Sequencing and Characterization of BfSUS Gene ancbBpeptide

SUS putative fragment that have been cloned to pGEdsy plasmid were further analyzed by
dideoxy chain-termination method to read the nu@eosequence of the isolated fragment.
Minimum 150 ngil of plasmid DNA is required to a single sequenaiegction. Since the 1866
bp gene fragment is relatively long for a singlewaate reading by the sequencer system, two
steps of sequencing are needed to accomplish thkeftagment reading. The first sequencing
employed T7 and SP6 universal primers, which foldwby second sequencing using gene
internal—primers. Gene-internal primers were de=igrfrom the first sequencing result.
Sequencing result from those four primer directiorese finally assembled using Geneious 4.6.2
program. All sequencing process was conducted byrddgn Inc. in South Korea.

Characterization dBfSUSputative gene comprises nucleotide and polypesidgience analysis.
The nucleotide sequence of the putaBf8USwas aligned with SUS cDNA sequences deposited
in GenBank \ww.nchbi.nlm.nih.goy using BLASTn program in order to find their siarity.
The BfSUScDNA sequence was then translated into BfSUS mgtide using Geneious 4.6.2,
followed by searching in the GenBank using BLASTpgoam. The highly conserved regions,
including essential domains and motifs, were sesttehithin BfSUS putative polypeptide, either
by employing Geneious 4.6.2 program or by compatimg polypeptide with other related
proteins that have been previously annotated. (Qitweins from the same family are preferable
since it is expected to share similar propertiethvhe SUS. To reveal genetic relationship
betweerBorassus flabellifeand other plant species based on their SUS poligeepequence, a
neighbor- joining (NJ) phylogenetic tree was getegtaising Geneious 4.6.2 tree builder.

CONCLUSION

A partial cDNA fragment of sucrose synthase (SU8afive gene has been successfully isolated
from the young leaves dB. flabellifer, henceforth named a&BfSUS The sequence has been
submitted to the Genbank with accession nur@@265926 The sequence &fSUScDNA, and

the corresponding BfSUS polypeptide, is highly &mivith SUScDNA and SUS protein from
various plant species recorded in GenBank, witlhdsg) similarity shown by ulipa gesneriana
and Oncidium sp The BfSUSputative polypeptide performs all typical charaistics of SUS
protein, including most conserved domains and moBfesence of sucrose synthase (SUS) and
glycosyl transferase (GT) domains, four putativeRJflucose binding pockets within the GT
domain, and a calcium-dependent Ser/Thr proteiadanbinding site (Ser170) within the SUS
domain, confirms that thBfSUScDNA fragment obtained in this study is most likeincodes
sucrose synthase B. flabellifer. This also assuring th&fSUSgene is expressed in the young
leaves oB. flabellifer.



Table 1 Summary of five tested methods for RNA isolatitom young leaves dB. flabellifer.

TRIzol- modified Il found to be the best method ®NA isolation from the young leaves of
B. flabellifer

Ratio of UV RNA quality RNA yield Total

Method absorbance in gel (ng/mi)” time
(A26d/A2g0) electrophoresis (hour)

TRIzol-modified | 1.23-1.24 Average 114.75 5
(Invitrogen)
Sekiet al, 2002 1.44 -1.47 Poor 93.50 8
Khemvong &Suvachittanont 1.67 — 2.00 Poor 44.625 12
(2005)
Apt et al (1995)-modified 1.45-1.47 Good 148.75 18
TRIzol-modified I 1.61-1.62 Good 1600 4

(Invitrogen)
*) RNA yield = (Absorbance in 260 nm¥2.6.g/ml) x (dilution factor)

28s rRNA

18s rRNA

Figure 1. Comparison of RNA quality obtained by the five &sbtmethods. Two bands of
ribosomal RNA, the 18s and 28s rRNA, that were geclin electrophoresis gel indicated that
total RNA ofB. flabellifer has been successfully obtained. TRIzol-modifiemhéthod is the best
method for RNA isolation from the young leave®Boflabellifer.

Figure 2. A single cDNA fragment of 1866 bp, generated byerse transcription-PCR, predicted
as the target fragment of the SUS genB.dfabellifer.
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+3000 by ——» + 3000 by
+ 1866 by + 1995 bp
+ 1300 by
+500bp
Figure 3. (a) The recombinant plasmid cut wilkcoRIgenerated two unexpected + 1300 and £
500 bp fragments indicating gene internal cut big ttnzyme;(b) plasmid cut withNotl
generated a single expected fragment of length @186 indicating that SUS gene &
flabellifer had been successfully inserted in the MCS regfathe plasmid;(c) PCR screening
using SP6 and T7 primers resulted in £1995 bp feagntonfirmed the presence of SUS
fragment within the MCS region of the pGEM easy plasmid.
Table 2. Pair of forward and reverse primers used to isdategose synthase gene from total
RNA of Borassus flabellifeyoung leaves.
Primer Primer Sequence Start Primer Product GC ™™ Sec. BLAST
Code Length Size (%) (°C) Struc  Output
(bp) ture =
species)
SUSFw CTTGAGCTGGACTTTGAGCCA 412 21 52.38 62.92 Weak 10
SUSRv CTTCCAGGTGTACTTCTCCTCGAT 2277 26 1866 50.00 62.72 Weak 8
AC
Table 3.Chemical composition in cDNA synthesis
No. Component Final concentration
1 Total RNA ofB. flabellifer 2 ug/20pl
2 dNTPs 0.5 Mm
3 Oligo (dT)y.18 primer 0.025ug/ul
4 Buffer RT 1x
5 MgCl 5 mM
6 Dithiothreitol (DTT) 0.01 M
7  RNase odt! Recombinant Rnase 1 u/gD
8  Superscript! Il- Reverse Transcriptase 1u/go
9 DEPC-treated deionized water until @0
10 E. coliRNaseH 1 /20 pl
Table 4. Composition of PCR mixture for SUS cDNA isolation
No. Component Final concentration
1 10xlong PCR buffer 1x
2 2mMdNTP mix 0.2 mM
3 25 mM MgC} 2 mM
4 Primer (forward and reverse) QB
5 Total cDNA 0.03ug/ul
6 Long PCR enzyme mix 1.25 unit/ pD
7  Nuclease free water to #b
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1756 GCT GCT GAG CTT CTA GTC AGT TTC TTIC GAG Add TGC AGG GAL AC 1300
LE6 4la Ala Glu Leu Leu Wal 3J3er Phe Phe Glu Lys Cys Arg Gli Asn &00

1501 CCC ACC CAC TGG CAT Add ATT TCA Chd GGA GGG CTG &bdG AGT ATC 1545

601 Pro Thr His Trp His Lys Ile 3J3er Gln Gly Gly Leu Lys 3Ser Ile 6l5
I |

1545 GAG GAG AAG TAC ACC TGG ALG 1566

6la Glu Glu Lys Tyr Thr Trp Lvs

Figure 4. Sequence of partial cDNA dBorassus flabelliferSUS putative gene. The
yellow arrow indicates forward primer, SSFw, aneé tjreen arrow indicates reverse
primer, SSRv. The red arrow indicates internal pripl, and the blue arrow indicates
internal primer p2. The red box indicates restittisite of EcCoRI endonuclease
restriction enzyme. The brown box indicates pueftiosphorylation site (30-RHLSS-
34). The blue boxes indicate four putative UDP liggockets (166-DTGGQ-170; 444-
MAR-446; N520; and T546)
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Figure 6. A phylogenetictree based on sucrose synthaseypeptide sequen of various monocot
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Figure 7. Seven regions in BfSUS polypeptide that highly @wed among monocot species: (1) Sucrose syntt@said spanning from N-
terminal region to Ser422; (2) A putative calciuepdndent Ser/Thr protein kinase binding site in3®d&RHLSS-34 motif within the SUS domain.
This site may have role in triggering enzyme degtiath via the ubiquitin/26S proteasome; (3)Glyctrsylsferase (GT) domain spanning from
Asnl46 to the C-terminal region. Four putative UBIRding pockets are detected within this domaineyrare: (4) Glycine residues in 166-
DTGGC-170 motif, (5) 444MAR446, (6) N520, and (7) T5
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Figure 8. Seven regions in BfSUS polypeptide that highly emmed among monocot species: (1) Sucrose synth@s@id spanning from N-
terminal region to Ser422; (2) A putative calciuepdndent Ser/Thr protein kinase binding site in3®RHLSS-34 motif within the SUS domain.
This site may have role in triggering enzyme degtiath via the ubiquitin/26S proteasome; (3)Glyctrsylsferase (GT) domain spanning from
Asnl46 to the C-terminal region. Four putative UBIRding pockets are detected within this domaineyrlare: (4) Glycine residues in 166-
DTGGQ-170 motif, (5) 444MAR446, (6) N520, and (H4b.
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Figure 9. Seven regions in BfSUS polypeptide that highly @med among monocot species: (1) Sucrose synth@said spanning from N-
terminal region to Ser422; (2) A putative calciuepdndent Ser/Thr protein kinase binding site in3BdRHLSS-34 motif within the SUS domain.
This site may have role in triggering enzyme degtiath via the ubiquitin/26S proteasome; (3)Glyctsyisferase (GT) domain spanning from
Asnl146 to the C-terminal region. Four putative UBIRding pockets are detected within this domaineyllare: (4) Glycine residues in 166-
DTGGQ-170 motif, (5) 444MAR446, (6) N520, and (B4b.
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