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ABSTRACT

 Population of  Flindersia pimenteliana (Maple Silkwood) in Indonesian Papua and Papua New Guinea is severely 
fragmented and experiencing a continuing decline due to habitat destruction and illegal logging. This species is very 
susceptible to environmental changes and at greater risk of  extinction due to its small and fragmented geographic 
ranges and low abundance. Using maximum entropy (MaxEnt) method, the present study predicted the impact of  
climate change on the distribution of  the species across its native distribution area. Elevation and 19 bioclimatic 
variables commonly used in species distribution modeling were used as predictors.  The prediction model of  the 

2current potential distribution identified a total area of  156,214 km  in Indonesian Papua and Papua New Guinea (18% 
of  total land area) as suitable habitat for F. pimenteliana. Elevation and precipitation of  the wettest, coldest and warmest 
quarters contributed most to the model. Based on the average of  HadGEM2-ES and MIROC-ESM models, potential 
distribution projections under RCP8.5 scenario suggested a habitat gain of  16% for 2050 and 8% for 2070 in the 
species distribution. Whereas under RCP4.5, an average habitat gain of  7% was predicted for both 2050 and 2070. The 
newly suitable habitats were predicted to be found mainly in Southern and Western Highland of  Papua New Guinea. 
Protection of  these areas from habitat destruction and land use change is needed to assist F. pimenteliana find the most 
suitable climate for its survival. 

 Keywords: Climate change, distribution models, Flindersia pimenteliana, MaxEnt, prediction

INTRODUCTION

Climate is one of  the most important factors 
influencing plant distribution. At population 
scale, seed germination, growth and survival of  
plants are strongly influenced by temperature and 
precipitation (Walck et al. 2011). Thus, the rapidly 
changing climate for the coming decades will 
undoubtedly alter local environment where plants 
grow and consequently change their abundance 
and distribution (IPCC 2013). Plants have only 
two alternatives in dealing with future climate 
change in order to survive i.e. either adapting in 
situ or dispersing to find the most suitable climate 
for their survival.  Failing to find the most suitable 
environment will result in the extinction of  the 
plants. In this context, understanding and 
predicting the response of  plant species and 

possible distribution alternatives under climate 
change condition are important to develop 
proactive strategies to reduce the impact of  
climate change on plant species diversity.

Species Distribution Models (SDMs) is an 
important tool in ecology and biodiversity 
conservation, both for understanding the factors 
that affect species distribution and for predicting 
the response of  species to climate change 
(Peterson et al. 2011; Franklin 2013; Guisan et al. 
2013; Guillera-Arroita et al. 2015). These models 
correlate species occurrence data and 
environmental variables to estimate species 
distribution using statistical- or machine-learning 
procedures (Phillips et al. 2006; Roberts & 
Hamann 2012). Among available models, 
Maximum Entropy (MaxEnt) (Phillips et al. 2006) 
is one of  the best SDMs for analyzing the 
presence-only data in terms of  ability to 
distinguish between areas where a species is 
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present, versus those where it is absent (Elith et al. 
2006). With more than 1,000 applications since 
2006, MaxEnt is also one of  the most popular 
SDMs, mainly due to the user-friendliness of  the 
software and its high predictive accuracy 
compared to other SDMs (Merow et al. 2013).

Flindersia pimenteliana F. Muell. (Rutaceae) 
(Maple Silkwood) is a tree native to Queensland 
(Australia), Indonesian Papua and Papua New 
Guinea (Australian Tropical Rainforest Plants, 
http://keys.trin.org.au). The species is usually 
found in well developed rain forests and in various 
sites, but reaches its best development in upland 
and montane rain forests. Evaluation on 
population status of   in Indonesian F. pimenteliana
Papua and Papua New Guinea revealed that the 
tree is categorized as  according to Endangered
the International Union for Conservation of  
Nature (IUCN) Redlist Category and Criteria 
(Eddowes 1998). Illegal logging is identified as 
major threat for this species, leading to severe 
population fragmentation and decline in the 
population size. Such species is very sensitive to 
environmental changes and at greater risk of  
extinction. In this study, MaxEnt was used as a 
tool to predict the impact of  climate change on 
the distribution of   across its native F. pimenteliana
environment. This study was aimed to: (1) predict 
current potential distribution of   in F. pimenteliana
Indonesian Papua and Papua New Guinea; (2) 
identify the environmental factors associated with 
habitat distribution of   and (3) F. pimenteliana
estimate the impact of  climate change to the 
future potential distribution of    the tree. The 
results of  this study may serve as a basis in 
developing long term adaptation strategies for 
assisting  in dealing with climate F. pimenteliana
change.

MATERIALS AND METHODS

Target Species and Occurrence Data

 Flindersia pimenteliana F. Muell. (synonym: F. 
chrysantha Merr. & L.M. Perry and F. mazlini F.M. 
Bailey) (Rutaceae) is a tree having height up to 40 
m.  This plant species can be a canopy or 
subcanopy tree. Its habitat ranges from near sea 
level to 1,300 m asl. The tree has a straight, 
cylindrical trunk which can be unbranched for up 

to 20 m and its diameter can reach 100 cm 
(Conn & Damas 2006). F. pimenteliana is heavily 
exploited from the wild due to its good quality 
timber, which is suitable for wood craft, furniture, 
moldings and interior construction purposes 
(Purnawati 2013). There had been several efforts 
to plant this tree in order to minimize timber 
harvesting from the wild. However, due to the 
trunk and canopy large sizes, it is economically 
impossible to grow this tree in plantation until 
reaching the same good timber quality as it is from 
the wild (Australian Tropical Rainforest Plants, 
http://keys.trin.org.au). Based on population 
assessment in Indonesian Papua and Papua New 
Guinea, the IUCN classifies F. pimenteliana as 
Endangered species, without considering 
population of  this species in Queensland 
(Australia).
 Occurrence data of  F. pimenteliana were 
obtained from the Global Biodiversity 
Information Facility (GBIF) (www.gbif.org), an 
open access data portal that provides rich 
information about the known presence of  
organisms. A total of  74 records with 
geographical coordinate were initially obtained 
from GBIF. This low numbers of  occurrences 
were mainly due to lack of  occurrence 
information from Indonesian Papua. The data 
were then filtered for duplicate and auto-
correlated occurrence points using spatially rarefy 
occurrence data tool in SDMtoolbox (Brown 2014). 
The tool removes spatial cluster of  localities 
according to climate heterogeneity. For this 
purpose, the tool was set as having two classes, 
natural breaks classification type and 10 km 
minimum distance.  The resulting data were 
composed of  23 unique distribution records 
which were then used for building the model. This 
filtering method can maximize the number of  
spatially independent localities and can enhance 
model performance by removing over-fit of  the 
models towards environmental bias (Veloz 2009; 
Hijmans 2012; Boria et al. 2014).

Creation of  Bias File

 MaxEnt typically selects background points 
from a large area and compares them with the 
present data to differentiate between the suitable 
and unsuitable environmental conditions. Van 
Der Wal et al. (2009) showed that model 
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this purpose, pairwise Pearson correlation 
coefficient of  current bioclimatic data was 
calculated using SDMtoolbox and r ≤ ±0.9 was 
used as a cut-off  threshold to determine the 
exclusion of  highly correlated variables (Table 1). 
The resulting variable set was composed of  9 
predictors (Table 2).
 Variables commonly used in ecological 
studies and best represented the original input of  
climate data (Bio1, Bio2, and Bio12) as well as 
those with the least correlation to others were 
retained in the model. Together with elevation 
data, these variables were considered to be the 
representatives of  predictor candidates and were 
assessed through Maxent's jackknife test. As a 
consequence, variables that contributed < 1.0% 
were eliminated and the final explanatory 
variables obtained were then used to build 
MaxEnt models for  (Table 2).F. pimenteliana

Future Climate Projections

 To  pred ic t  fu ture  d i s t r ibut ion  of  
F. pimenteliana, downscaled and calibrated global 
circulation model (GCM) of  HadGEM2-ES 
(Hadley Centre Global Environment Model, 
version 2-Earth System) and MIROC-ESM 
(Model for Interdisciplinary Research on 
Climate-Earth System Models) for 2050 (average 
for 2041 - 2060) and 2070 (average for 2061 - 
2080) were used (Hijmans  2005; et al.
http://www.worldclim.org). These data were 
among the most recent GCM climate projections 
that were used in the Fifth Assessment 
Intergovernmental Panel on Climate Change 
(IPCC) Report. Each of  these climate models 
had 30 arc-seconds resolution and projected 
two Representative Concentration Pathway 
(RCP) emission scenarios, namely RCP4.5 and 
RCP8.5. While the RCP4.5 represented low 
emission scenario, the RCP8.5 was a scenario 
of  high greenhouse gas emissions and 
represented the worst case scenario of  climate 
model simulation in the Fifth Assessment 
IPCC report (see Riahi  (2011) for more et al.
details of  the scenarios). Final models for future 
habitat prediction were obtained by averaging 
results from HadGEM2-ES and MIROC-ESM 
future climate models.

performance was lower when background points 
were selected from a large area. This happened 
because the background points selected, which 
were very distant from all presence points, were 
more likely to show environmental conditions 
that were very different from those for the 
presence data (Anderson & Raza 2010; Barbet-
Massin et al. 2012). Thus, the larger the study area, 
the higher proportion of  less informative 
background points is included in the model. To 
overcome this problem, a bias file was created in 
the present study to restrict background point 
selection and hence, increase the model 
performance. Using buffered minimum-convex polygon 
tool in SDMtoolbox, the bias file was built with 
maximum radial distance of  10 km from the 
occurrence points.

Selection of  Environmental Variables

 The elevation and current bioclimatic data set 
was obtained from the Shuttle Radar Topography 
Mission (SRTM) global elevation data (http:// 
srtm.csi.cgiar.org/) and WorldClim 1.4 database 
(Hijmans et al. 2005; http:// www.worldclim.org), 
respectively. The current bioclimatic data (Nix 
1986) consisted of  19 variables and were derived 
from monthly rainfall, while the temperature data 
were obtained from weather stations across the 
globe within the period of  1950 - 2000. These data 
showed annual trends, seasonality and extreme 
environmental factors; and were frequently used 
in predicting species distribution. Hence, a total 
of  20 environmental variables were initially 
considered for model building. All the 
environmental layers used in the model had 30 
arc-seconds or ≈1 km resolution. These layers 
were clipped to the Indonesian Papua and Papua 
New Guinea political boundaries and then 
converted to ASCII raster files using ESRI 
ArcMap 10.1. Due to the limitation of  data 
availability, the present study did not include other 
important variables influencing the distribution 
of  plant species, such as soil characteristics, 
distance from water bodies and groundwater 
table.
 To reduce model overfitting and minimize 
high co-linearity, highly correlated bioclimatic 
variables were removed from the model. For 
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 The potential range of  loss and gain of  
F. pimenteliana was calculated for the year of  
2050 and 2070. To determine whether the 
species assemblages would be constant or 
change in the future compared to the current 
potential habitats, the turnover rate ( ) was T
calculated using the following formula (Hu  et al.
2010):

where: T  = species turnover rate
  G  = species gain
  L  = species loss
  SR = current species potential distribution

 T value ranges from 0 to 100, where value of  
100 indicates that the species assemblages are 
different, while value of  0 indicates that the 
species assemblages are similar with previous 
conditions (Trisurat  2011).et al.

Model Development and Evaluation

 The maximum entropy method,  as  
implemented in MaxEnt (Version 3.3.3k), was 
used to model the potential distribution range of  
F. pimenteliana. To validate and calibrate the model, 
the MaxEnt modeling was run through Spatially 
Jackknife tool of  SDMtoolbox. Model validation 
was done using geographically structured 
threefold cross-validation method. Furthermore, 
the tool tested different combinations of  five 
model feature class types (1=linear; 2=linear and 
quadratic; 3= hinge; 4=linear, quadratic, and 
hinge; and 5=linear, quadratic, hinge, product, and 
threshold) to optimize the model performance. 
Each of  these model parameter classes was run in 
five replicates. Finally, the best model was 
automatically selected by evaluating the omission 
rate, Area Under the Curve (AUC) and model 
feature class complexity of  each model. To 
measure the importance of  environmental 
variables, the  procedure was used Spatially Jackknife
which created response curves.
 The best model selected was used to run the 
final model using all of  the occurrence points. The 
model was also projected to the future climates of  
2050 and 2070 using RCP4.5 and RCP8.5 
emission scenarios. Maximum training sensitivity 
plus specificity logistic threshold was used to 
convert the continuous suitability index into 
suitable and unsuitable areas for  F. pimenteliana.

The predicted suitable areas were then clipped by 
25 m resolution PALSAR-2/PALSAR forest 
cover of  2015 obtained from the Japan Aerospace 
Exploration Agency (www.eorc.jaxa.jp).

RESULTS AND DISCUSSION

Model Performance and Environmental 
Variable Responses

 Although there are some drawbacks attributed 
to MaxEnt, such as overfitting, model complexity 
dependency and independent evaluation data 
requirement (Radosavljevic & Anderson 2014), 
its user-friendliness has attracted many 
application in SDMs. Furthermore, MaxEnt has 
been shown to perform better than other models 
for analyzing presence-only data. The model also 
has the best predictive power even with very low 
sample size (Wisz et al. 2008). In the present study, 
using 23 occurrence data, the MaxEnt model 
developed for predicting the potential 
distribution of F. pimenteliana was significantly 
better than random expectations. The average test 
AUC for the replicate runs was 0.710 (SD = 
0.043). Peterson et al. (2011) argued that the AUC 
value of  0.7 - 0.9 indicated moderate performance 
of  the model. The present study was the first 
attempt on building SDMs to predict potential 
current and future distribution of  F. pimenteliana in 
Indonesian Papua and Papua New Guinea.
 After removing highly correlated bioclimatic 
variables and those with < 1% contribution, there 
were 6 variables identified as being important in 
creating model fit for  (Table 2). F. pimenteliana
Precipitation-related variables (Bio13, Bio18 and 
Bio19) had the most influence to  F. pimenteliana
distribution. These variables together contributed 
61.8 % to the model. On the other hand, 
temperature-related variables (Bio3 and Bio2) 
together contributed only 9.4% to the model. 
Furthermore, elevation was also important 
variable for  distribution with 28.8% F. pimenteliana
contribution. The significant role of  precipitation 
on tree species distribution in tropical forests was 
well documented (Baltzer  2008; Brenes-et al.
Arguedas  2009; Baltzer & Davies 2012). Soil et al.
water availability affected by precipitation is a 
direct determinant of  tropical trees distributions 
in both local and regional scales (Engelbrecht  et al.
2007; Toledo  2012)et al. .
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 Response curves of  the top four of  highly 
contributed variables for F. pimenteliana were 
shown in Figure 1. Habitats with elevation 
between 400 – 1,500 m had high potential 
suitability for the species. Furthermore, habitats 
with precipitation of  the wettest month between 
160 - 300 mm (Bio13) had high suitability for 
sustaining F. pimenteliana. In addition, the species 
preferred habitat having precipitation of  the 
coldest quarter (Bio19) and the warmest quarter 
(Bio18) between 100 - 400 mm and 360 - 760 mm, 
respectively. Habitat suitability of  F. pimenteliana 
decreased with the increasing value of  the 
precipitation-related variables. This pattern is 
understandable as, according to Schuur (2003), 
increased precipitation in humid tropical forests is 
known to have negative effect on plant growth and 
net primary productivity. The author argued that 
high rainfall in humid ecosystem may reduce plant 
growth and productivity by decreasing radiation 
inputs, increasing nutrient leaching or reducing 
soil oxygen availability.

Prediction of  Current Distribution

 Using maximum training sensitivity plus 
specificity logistic threshold (0.396), model 
prediction of  the current distribution identified a 

2
total area of  156,214 km  (18% of  total land area) 
as suitable habitat for F. pimenteliana. Liu et al. 
(2013, 2016) suggested that for presence-only 
data, maximum training sensitivity plus specificity 
logistic threshold can be used confidently for 
threshold selection as it produced higher 
sensitivity compared to other methods. Most of  
the suitable habitats were observed in 
mountainous regions and southern coastal areas 
of  the main island where the precipitation 
intensity was relatively low (Fig. 2). In Indonesia, 
potentially suitable habitats for F. pimenteliana 
were mostly located along mountain chains of  
Indonesian Papua, extending from the mountain 
ranges in Sorong Regency to the Jayawijaya 
Mountains in Pegunungan Bintang Regency. 
There were also relatively separated suitable
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Figure 1 Response curves of  the top four of  highly contributed variables for MaxEnt model of Flindersia pimenteliana. The  
red center line represents the mean values derived from the cross-validation runs, while the blue curve delineates 
the standard deviation. Variable definitions: Bio13, elevation (m), Bio19 and Bio18 represent precipitation (mm) of  
the wettest month as well as the coldest and warmest quarters,  respectively
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regions for  such as in Waigeo Island F. pimenteliana
in Raja Ampat Regency, Fakfak Mountains in 
Fakfak Regency, Kumawa Mountains in Kaimana 
Regency and coastal areas in the southern region 
of  Merauke Regency. For Papua New Guinea, 
most of  the potentially suitable habitats were 
observed to be along mountain regions in eastern 
highlands and Owen Stanley Range. Furthermore, 
suitable habitats were also detected in south-
western corner of  the Western Province, coastal 
areas of  East Sepik Province, east part of  New 
Britain Island and New Ireland Island.
 Very little is known about the habitat 
distribution of  F. pimenteliana in Indonesia as study 
examining this species is very scarce. Recent study 
conducted by Purnawati et al. (2012) and 
Purnawati (2013) reported that the species was 
observed in Teluk Cendrawasih National Park, 
Teluk Wondama Regency, which was also 
included as a suitable habitat in the present model 
prediction. Further surveys in other predicted 
distribution areas of  the plant are needed to 
validate the prediction of  the present study.
 For Papua New Guinea, some of  the predicted 
areas agree with areas mentioned in the specimen 
records of  F. pimenteliana held by the Royal 
Botanic Garden of  Sydney (http://plantnet. 
rbgsyd.nsw.gov.au). These areas included many 
localities in Morobe Province (more than 53 
records), Eilogo in Central Province, Bewani in 
West Sepik Province, Mount Obree and Toma 
Village in Northern Province, Mount Kilkerran 
and Rabaraba in Milne Bay Province and Goroko 
and Aiyura in Eastern Highlands Province. 
Further surveys are required in other predicted 

areas to validate the model prediction, especially 
in Western Province where specimen record of      
F. pimenteliana is absent. In addition, new surveys 
in previously known areas are also considered 
necessary as most of  the records mentioned 
above are very old (some records are dated back to 
1923).
 Protected areas are one of  the most important 
tools in plant conservation. In the present study, 
most of  the predicted suitable habitats of  
F. pimenteliana were located outside the existing 
protected areas (Fig. 3). Only 24,393.9 km  2

(15.6%) of  these habitats were currently covered 
by terrestrial protected areas in Indonesian Papua 
and Papua New Guinea. As can be seen in Figure 
3, protected areas with high coverage of  predicted 
suitable habitats for  are mostly F. pimenteliana
found in Indonesia, including Tambrauw 
Mountain Nature Reserve, Lorenzt National 
Park, Jayawijaya Nature Reserve, Enarotali Nature 
Reserve and Kumawa Mountain Nature Reserve. 
To protect and conserve , expansion F. pimenteliana
of  existing protected areas or establishing the new 
one is necessary to cover the predicted suitable 
areas as much as possible. This action is especially 
needed in Papua New Guinea where only small 
percentage of  the predicted suitable habitats is 
covered by the existing protected areas.
 Although the present study was able to predict 
suitable habitats of   with high F. pimenteliana
success rate, care should be taken when 
implementing the results in the field-based 
conservation programs. Since MaxEnt estimates 
the fundamental niche of  a species, the predicted 
distribution presented in this study might be
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Figure 2 Predicted potential distribution of   Flindersia pimenteliana for current (2016) and future climate conditions (2050 
and 2070) under RCP4.5 and RCP8.5. Future habitat predictions were obtained by averaging results from 
HadGEM2-ES and MIROC-ESM future climate models



overestimated (Pearson 2007). The model does 
not consider other factors influencing the 
distribution of  plant species such as dispersal 
process, anthropogenic influences, biotic 
interactions or geographic barriers (Pearson 2007; 
Soberón 2007).

Prediction of  Future Distribution

 Future distribution of  F. pimenteliana predicted 
by HadGEM2-ES and MIROC-ESM model 
generally had low agreement in Papua New 
Guinea compared to that in Indonesian Papua. 
Standard deviation between the two models was 
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Figure 3 Current (2016) potential distribution of  Flindersia pimenteliana and existing protected areas in Papua and Papua New 
Guinea according to World Database on Protected Areas (WDPA, http://www.protectedplanet.net/)

Figure 4 Standard deviation of  predicted probabilities of  Flindersia pimenteliana occurrence from HadGEM2-ES and 
MIROC-ESM future climate models. Black dots are occurrence data used in modeling

Impact of  climate change on Flindersia pimenteliana – Robiansyah



higher in Papua New Guinea, especially in regions 
where no sample data were recorded (Fig. 4). 
Based on the average value of  the models, the 
suitable habitat for F. pimenteliana was predicted to 
decline by 3% for RCP4.5 and 2% for RCP8.5 in 
the year 2050. The suitable habitat gains for the 
two RCPs were 7% and 16%, respectively. Hence, 
the percentage turnover in 2050 was estimated to 
be 41% and 54% for RCP4.5 and RCP8.5, 
respectively (Table 3).
 For 2070, the suitable habitat for the species 
was predicted to decline by 4% for both RCP4.5 
and RCP8.5, whereas the habitat gains were 7% 
and 8%, respectively. Therefore, the percentage 
turnover in 2070 was estimated to be 44% for 
RCP4.5 and 48% for RCP8.5 (Table 3). Under 
RCP4.5, the species was predicted to gain suitable 
habitats in Southern and Western Highland of  
Papua New Guinea in 2050. This gain was 
relatively stable and still could be observed in 
2070. Higher suitable habitat gain was observed 
under RCP8.5 in 2050. This gain, however, was 
not stable and greatly decreased in 2070 (Fig. 2). In 
contrast, the suitable habitat along Jayawijaya 
Mountains, coastal area of  Merauke Regency and 
East Sepik Province, and the most east of  Owen 
Stanley Range in Papua New Guinea were 
predicted to disappear in 2050. These habitat 
losses were similar for both RCPs and relatively 
stable until 2070 (Fig. 2).
 Since the species had turnover rate of  more 
than 30%, major shift in distribution was 
predicted to occur in the future for both RCPs. 
While some of  predicted suitable habitats in 
southern coastal  regions disappeared,  
mountainous areas located in the middle of  
Papua New Guinea were predicted to become 
suitable habitats for F. pimenteliana in 2050 and 
2070. Changes in timing and seasonality of  
rainfall in the future may be responsible for 
this range shift. Australian Bureau of  

Meteorology and CSIRO (2011) predicted 
rainfall pattern change in Papua New Guinea 
with more than 15% increase in annual and 
seasonal rainfall by 2090. This range shift of  
geographic distribution towards higher elevation 
is also observed in many terrestrial organisms and 
is commonly linked to increased growth and 
dispersal success due to warmer climate (Chen et 
al. 2011). Although the temperature was 
predicted to increase at 0.11 °C per decade over 
Papua New Guinea (Australian Bureau of  
Meteorology and CSIRO 2011) and in the range 
of  0.2 - 0.3 °C per decade over Indonesian Papua 
(Boer & Faqih 2004), the present study, however, 
was unable to detect this correlation as all 
temperature-related variables had little effect to 
the model.    

CONCLUSIONS

 It is likely that F. pimenteliana will benefit from 
climate change, as environmentally suitable 
ranges for this species are projected to increase by 
2050 and 2070. The present study predicted major 
range shift of  geographic distribution for the 
species towards higher elevation. The newly 
suitable habitats were predicted to be found 
mainly in Southern and Western Highland of  
Papua New Guinea. These are the areas where the 
protection of  the species might be the most 
feasible and cost-effective in the future. Thus, 
protection of  these areas from habitat destruction 
and land use changes is needed to make sure that 
F. pimenteliana can adapt to the climate change. 
Further field surveys are required to validate the 
prediction of  the present study. Furthermore, it is 
recommended to obtain additional occurrence 
data and include other important predictors (e.g. 
edaphic factors) to minimize uncertainty in 
climate projections.
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Table 3 Predicted gain, loss and total suitable habitats, and turnover rate of  Flindersia pimenteliana for future climate 
conditions (2050 and 2070) under representative concentration pathway (RCP) 4.5 and RCP 8.5

  2050 2070

RCP4.5 RCP8.5 RCP4.5 RCP8.5

Suitable (km2) 195,058  275,956  188,578  190,397  

Gain (km2) 64,516  140,551  64,818  71,940  
Loss (km2) 25,671  20,810  32,454  37,757  
Turnover (%) 41 54 44 48
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