
BIOTROPIA Vol. 31 No. 1, 2024: 63 - 75  DOI: 10.11598/btb.2024.31.1.2054 

63 

EVALUATION OF INDONESIAN LOCAL SOYBEAN BASED 
ON CHEMICAL CHARACTERISTICS AND VISIBLE - NEAR 

INFRARED SPECTRA WITH CHEMOMETRICS 
 

FARID R. ABADI, RUDIATI EVI MASITHOH*, LILIK SUTIARSO AND SRI RAHAYOE 

 
1Department of Agricultural and Biosystems Engineering, Faculty of Agricultural Technology, Universitas Gadjah Mada, 

Yogyakarta 55281, Indonesia 
 

Received 15 July 2023/ Revised 25 October 2023/ Accepted 30 October 2023 
 
 

ABSTRACT 
 

Soybean characterization is essential to ensure product quality during distribution according to internal values. 
In this context, non-destructive characterization method, such as spectroscopy, offer an effective and efficient 
approach to testing soybean quality in field applications. Among the instruments that are widely used for testing 
soybean quality, the semi-portable visible near-infrared (Vis-NIR) spectrometer operating at a specific range of 345 
to 1033 nm has been proven effective. Therefore, this study aimed to investigate soybean seeds characterization 
using Vis-NIR spectroscopy with PCA and PLSR chemometric methods. The investigation was carried out using 
soybean seeds consisting of eight varieties locally produced on Java Island, Indonesia, including Dega1, Dena1, 
Deja2, Dering1, Devon1, Yellow Flap, Green, and Detam4, in the form of intact, crumble, flour, and paste. Several 
quality parameters such as protein, fat, crude fiber, carbohydrate, ash, water, chlorophyll, total carotene, vitamin C, 
and L*, a*, and b* values were measured across intact, crumble, flour, and paste samples. The results of Principal 
Component Analysis (PCA) showed that sample form and genotypes affected soybean classification. Furthermore, 
Partial Least Squares Regression (PLSR) showed adequate model calibration for crude fiber, chlorophyll, total 
carotene, and vitamin C parameters. Based on this analysis, it could be concluded that Vis-NIR spectroscopy 
proved to be suitable for the classification and prediction of soybean characterization. 
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INTRODUCTION 
 

Soybean is a staple food in Indonesian society, 
progressively gaining popularity annually 
alongside rice and corn in daily consumption 
(Harsono et al. 2021). In Indonesia, the national 
soybean consumption rate from 2015 to 2021 has 
reached 11.5 kg/capita/year, with an average 
growth of 3.02 kg/capita/year. Due to this high 
demand, a consistent supply is required, as the 
main source of soybean is through import. A 
previous study has found that local contribution 
to meet national needs is below 50%, with Java 
Island being the most substantial contributor, 
accounting for more than 55% of the total 
soybean production in Indonesia (Kementan 
2020).  

The distribution of local soybean based on 
origin varies significantly according to geographic 
location, variety, and genotype, with the majority 
being distributed as seeds in the Indonesian 
market. Based on quality levels, the production of 
soybean strives to meet consumer demand 
according to value (Jia et al. 2020). Therefore, 
information about conditions and varieties, as 
well as the quality and characteristics of soybean, 
is required to determine the potential and quality 
measures at reasonable market prices. Quality 
testing is characterized by the use of destructive 
sample method during laboratory analysis, which 
is time-consuming and expensive. This 
phenomenon shows the need for a reliable, easy, 
fast, and cost-effective method to determine the 
characteristics of soybean.  

A common non-destructive method in food 
characterization is spectroscopy, widely *Corresponding author, email: evi@ugm.ac.id 
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recognized for the good measurement accuracy 
combined with chemometric analysis. This 
method has been used to explore the 
characterization of food ingredients in the 
spectrum of infrared (IR) (Manley 2014), 
ultraviolet (UV) (Farag et al. 2022), and visible 
(Vis) (Cortés et al. 2019; Wang et al. 2022). 
Specifically, the combination of visible and near-
infrared (Vis-NIR) light spectrum is frequently 
used for characterization, along with spectrum 
absorption by functional groups (Alander et al. 
2013). In Vis-NIR spectrometer, light absorption 
occurs due to the movement or excitation of 
subatomic particles relating to the specific 
element concentration of chemical compounds in 
the material (Mayerhöfer et al. 2019). Therefore, 
Vis-NIR spectrometer is used to measure the 
amount of light absorbed or reflected. 

Vis-NIR spectrometer has been extensively 
investigated, emphasizing its suitability for field 
applications (Walsh et al. 2020) due to simplicity, 
speed, and cost-effectiveness for quality 
evaluation (Cortés et al. 2019) and classification 
(Monago-Maraña et al. 2021). Specifically, fiber 
optic-based Vis-NIR spectroscopy has been 
explored for soybean characterization (Abadi et 
al. 2022), showing good performance for 
classification (Pahlawan et al. 2022), water 
evaluation (Pahlawan et al. 2023), and 
authentication (Masithoh et al. 2023). The results 
showed the potential of this instrument to 
support the production process for soybean 
characterization in field applications. Therefore, 
this study aimed to evaluate the application of 
Vis-NIR spectroscopy for characterizing soybean 
in various forms such as intact, crumble, flour, 
and paste. 

MATERIALS AND METHODS 

 

Materials 

The materials used included local soybean 

obtained from the Indonesian Legume and Tuber 

Crops Research Institute (ILETRI), as well as 

Yogyakarta Region for the first planting season 

2021 (ILETRI, 2016). Soybean seeds were at 

mature pod stage of R8 labeled as (1) Dega1 = 

K1, (2) Dena1 = K2, (3) Deja2 = K3, (4) Dering1 

= K4, (5) Devon1 = K5, (6) Yellow Flap = K6, 

(7) Green = K7, and (8) Detam4 = K8. 

 

Spectra Measurement 

Approximately, 15 g soybean seeds were 

placed in petri dish and the spectra were 

measured for intact, crumble, flour, and paste 

forms. Soybean flour was obtained by milling 

seeds for 2 minutes to reduce the size and sifting 

through a 60-mesh sieve. The samples that did 

not pass the 60 mesh sieve were used as crumble, 

while the paste samples were obtained by mixing 

5 g soybean flour with 10 ml distilled water in 

petri dish. Therefore, four forms of soybean were 

used in this study, namely intact, crumble, flour, 

and paste. 

Spectroscopic data were obtained using Vis-

NIR spectrometer (Flame-T-VIS-NIR, Ocean 

Optics, USA) with 345-1033 nm wavelength 

range in reflectance mode. The light source was a 

tungsten-halogen lamp (HL-2000-HP-FHSA, 

Ocean Optics, USA) with a reflectance probe 

(QR400-7-VIS-NIR, Ocean Optics, USA). 

 

 

Figure 1  A portable Vis-NIR spectrometer arrangement 
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Bulk, flour, and paste soybean samples were 

poured into petri dish (Ø=5 cm), followed by 
spectra measurementdescribed by Abadi et al. 
(2022). The fiber optic sensor was placed in the 
probe holder, which was arranged 
perpendicularly (α=90o) to the sample at a 
distance of 2 mm, as shown in Figure 1. The 
probe sensor was connected to a light source and 
a detector capturing reflectance data, which was 
collected by OceanView 1.6.7 software (Ocean 
Insight, USA). Before reflectance spectra 
measurement, instrument calibration procedures 
were performed by measuring the white 
reflectance spectra standard, followed by black 
reference spectra. This calibration was performed 
on every 10 samples, which were individually 
measured in triplicate, as described by Masithoh 
et al. (2023). Subsequently, color and chemical 
measurements were carried out after spectra 
measurement. 

 
Color and Chemical Parameters 
Measurement  

Color parameters denoted by L*, a*, and b* 
values were measured using a handheld color 
meter (TES 135A, Taiwan). L* value represented 
lightness plotted on the vertical axis on a color 
space diagram with values ranging from 0 (black) 
to 100 (white). Moreover, a* and b* were color 
coordinates with a* (positive) and a* (negative) 
representing red and green, while b* (positive) and 
b* (negative) represented yellow and blue, 
respectively (Berns 2019). After color 
measurement, the destructive analyses were 
carried out to determine water content, crude 
protein, crude fiber, ash content, carbohydrates, 
fat, chlorophyll, total carotene, and vitamin C 
using the official AOAC methods (AOAC 2007). 
One-way analysis of variance (ANOVA) was 
performed for all chemical parameters and 
soybean samples. Subsequently, color and 

chemical parameters were analyzed using a single-
factor analysis of variance with SPSS (SPSS Inc., 
Chicago, IL, USA), and mean comparisons were 
evaluated with Duncan's test. 
 
Chemometric Analysis 

Chemometric analysis, including Principal 
Component Analysis (PCA) and Partial Least 
Square Regression (PLSR), was conducted after 
measuring quality parameters such as color and 
chemical aspects. The data comprised four 
sample types and eight soybean varieties with five 
replications for each sample, totaling 160 data 
generated by spectra acquisition. The spectra and 
quality parameters data were used as x-variables 
in PCA analysis. For PLSR analysis, the 
reflectance spectra of all samples were used as x-
variables, while color and chemical parameters 
served as y-variables. Compared to supervised 
PLSR, PCA is unsupervised chemometrics that 
does not require y-variables as predictors. During 
PLSR analysis, the 160 data obtained were 
divided into calibration and prediction data of 
112 and 48, respectively. The performance of 
PLSR calibration model was determined from the 
determination of calibration (R2c) coefficient and 
root mean square error of calibration (RMSEC). 
The calibration model was validated using a full 
cross-validation (CV) method. Subsequently, the 
best calibration PLSR model was applied to 
predict color and quality parameters using 
prediction data presented in the form of R2p and 
RMSEP. PLSR model was improved using 
various spectra preprocessing methods such as 
smoothing, normalization, and derivation. As 
shown by the workflow of chemometric analysis 
in Figure 2, the final output was the best PLSR 
model, which was validated using the 30% 
prediction data. The performance of the 
validation model was determined from R2 of 
prediction and RMSEP. 
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Figure 2  Workflow of chemometric analysis in soybean characterization 

 
 

RESULTS AND DISCUSSION 
 

Color and Chemical Parameters 

Soybean samples were harvested ripe or at a 
late-stage color, with K1-K6 being yellow, while 

other genotypes were green (K7) and black (K8). 

Although intact soybean seeds in Figure 3 had 

different peel colors when observed using human 

eyes, a similar color was identified in crumble, 

flour, and paste forms. 

 
  

Intact Crumble Flour Paste 
 

Intact Crumble Flour Paste 

K1 = 
Dega1 

 
    

K5 = 
Devon1 

     

K2 = 
Dena1 

    

K6 = 
Yellow 
Flap     

K3 = 
Deja2 

     

K7 = 
Green 

    

K4 = 
Dering1 

    

K8 = 
Detam4 

    

Figure 3  Figures of different soybean genotypes in bulk, crumble, flour, and paste forms 
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Table 1 shows the results of one-way 
ANOVA for different samples. The statistical 
analysis based on parameters L*, a*, and b* 
showed that p-value was below the significance 
level α = 0.05. A significant difference was 
observed in the average L*, a*, and b* values 
between groups K1 to K8 in bulk, crumble, flour, 
and paste samples. However, all groups in paste 
form had low lightness due to the addition of 
excess water, which decreased surface reflection. 

Table 2 shows significant differences between 
groups regarding protein, ash, water, chlorophyll, 
and vitamin C. Black color of the K8 soybean 
variety had the highest protein, chlorophyll, and 
total carotene content. However, there were no 
significant differences between groups regarding 
fat, crude fiber, carbohydrate, chlorophyll, and 
total carotene.  

  
Principal Component Analysis (PCA) 

PCA Based on Soybean Characteristics 

Figure 4 shows PCA plot based on soybean 
characteristics. The data obtained were treated in 
the preprocessing stage, including a moving 
average smoothing with 150 segments. 
Subsequently, the transformation stage, including 
normalization, derivative, baseline correction, 
and Standard Normal Variate (SNV), showed 

that range normalization yielded the most 
appropriate performance. PCA scores showed 
distinct clustering among more resilient colored 
soybean, specifically the yellowish, greenish, and 
black varieties, as explained by PC-1 (28%) and 
PC-2 (21%). In Figure 2a, yellowish soybean (K1-
K6) predominantly occupied Quadrants I and IV, 
with PC-1 values primarily negative and PC-1 
positive <1.5. Greenish soybean (K7) was 
positioned in Quadrant I, marked by positive PC-
1 and PC-2 values, while black soybean (K8) was 
located in Quadrant IV. Figure 2b shows the 
significance of various parameters in 
differentiating samples in each quadrant. In 
Quadrant I, parameters such as crude fiber, 
chlorophyll, ash, protein, and total carotene 
played a crucial role. A significant influence was 
observed in Quadrant II due to L*, a*, and b* color 
values along with fat content. Quadrant IV 
showed carbohydrate parameters, while water 
and vitamin C content were observed in 
Quadrant III. The clustering of greenish 
soybeans (K7) appeared to be influenced by 
parameters such as crude fiber, chlorophyll, ash, 
protein, and total carotene, while water and 
vitamin C content had a notable impact on the 
black soybeans (K8). This showed that various 
characteristics, based on the analyzed parameters, 
significantly influenced the grouping of samples. 

 
Table 1  L*, a*, and b* values of intact, crumble, flour, and paste of different soybean genotypes  

Color Sample K1 K2 K3 K4 K5 K6 K7 K8 

L* Intact 70.56 49.86 60.06 66.88 54.33 58.95 60.3 23.24 
 Crumble 72.98 76.75 77.76 82.24 83.14 62.16 83.51 64.97 
 Flour 70.83 72.62 94.19 75.28 92.37 56.78 92.15 87.46 
 Paste 52.52 49.67 54.64 31.33 48.61 64.31 59.63 41.76 

a* Intact 5.16 6.51 8.34 10.83 8.17 9.14 0.99 -2.05 
 Crumble 7.81 6.94 9.93 1.96 6.96 9.92 2.21 0.32 
 Flour 3.12 0.97 1.91 2.21 2.07 8.6 -1.99 -3.87 
 Paste 2.79 2.74 2.5 0.98 3.15 2.96 -1.4 -3.78 

b* Intact 34.08 31.76 34.38 37.08 31.35 30.98 35.67 0.15 
 Crumble 40.34 38.82 38.44 29.34 41.93 29.62 44.81 31.36 
 Flour 27.69 32.29 35.2 30.65 31.9 27.81 36.4 33.06 
 Paste 32.49 26.2 31.54 22.14 28.54 27.97 33.04 16.14 

  
Table 2  Biochemical parameters of different soybean genotypes 

Code 
Protein 
(% wb) 

Fat  
(% wb) 

Crude 
Fiber  

(% wb) 

Carbohydrate 
(% wb) 

Ash  
(% 
wb) 

Water 
(% wb) 

Chlorophyll 
(mg/100g) 

Total 
Carotene 

(mg/100g) 

Vitamin C 
(mg/100gr) 

K1 35.17 17.04 8.87 34.37 5.13 8.65 3.41 2.47 113.53 
K2 33.42 18.38 9.35 33.51 5.31 9.99 3.56 1.98 117.72 
K3 35.05 16.74 9.46 33.93 5.16 8.76 3.36 1.95 111.52 
K4 32.39 17.64 6.6 36.31 5.09 8.65 0.45 1.48 185.64 
K5 35.06 15.43 8.19 35.37 5.76 9.02 3.47 2.16 143.07 
K6 34.21 15.15 8.36 34.41 6.01 8.52 3.84 1.56 141.82 
K7 34.53 16.71 9.5 32.54 5.59 10.21 15.1 2.76 138.34 
K8 36.29 16.41 8.62 34.03 5.56 8.42 9.32 3.54 178.17 
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(a) 
 

 
(b) 

Figure 4  PCA plot of (a) score and (b) bi-plot of score and loading based on soybean characteristics 

 
PCA Based on Soybean Spectra 

Figure 5 shows the average reflectance data 

for all preparation methods of each variety. The 

most effective preprocessing method included 

the application of a smoothing filter with 150 

segments, followed by range normalization. This 

spectral preprocessing method yielded more 

consistent and dependable quantitative values for 

other analyses. The graph shows a typical pattern, 

where a valley is evident in the spectral range of 

390 to 430 nm for all treatment types, followed 

by a peak in reflectance between 500 and 560 nm, 

decreasing towards the end of the spectral band. 

Specifically, paste samples showed relatively 

higher reflectance levels compared to others. 

Furthermore, the addition of water had a 
significant effect on the reflex response, leading 
to an increase in the reflectance values. 

As shown in Figures 3a and 3b, the difference 
in reflectance was significant between K1 and 
K2. The average reflectance values for intact, 
crumble, and flour treatments differed 
significantly from the paste treatment, showing 
lower reflectance. For K2, K3, and K4, the flour 
samples tended to show higher reflectance, while 
K5 was greater in the crumble samples. Intact 
soybean consistently showed lower reflectance 
levels across all preparation methods. An 
anomaly was observed for K7, where a small 
valley in the reflectance spectrum appeared in the 
650 to 690 nm range. 

IV III 

II I 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
 

(g) (h) 

Figure 5 The reflectance spectra in various sample types of all soybean varieties (a) K1, (b) K2, (c) K3, (d) K4, (e) K5, (f) 
K6, (g) K7, and (h) K8. 
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PCA analysis of the comprehensive 
reflectance dataset showed distinct patterns 
based on different preparation methods, as 
indicated in Figure 4a. Generally, two main data 
groups were found depending on the treatment 
applied to the samples. These included Group I, 
consisting of intact, crumble, and flour, and 
Group II, comprising paste samples. Specifically, 
Group II accounted for 83% of the variance in 
PC-1 and 11% in PC-2. Most samples in Group I 
tended to have negative PC-2 values, primarily in 
Quadrants III and IV. A significant distinction 
appeared when water was added to soybean paste 
in Group II, resulting in positive PC-2 values in 
Quadrants I and II. This phenomenon showed a 
spectrum response significantly different from 
other treatments. 

Various treatments showed distinct positions 
along the axes, with intact samples primarily 
located in the negative range of PC-1, spanning 
from <-25 to >-150. Meanwhile, crumble 
samples extended in the positive direction, 
ranging from >-50 to approximately 0. An 
outlier, representing the intact black soybean 
(K8) sample, was found at the left end of 
Quadrant III. The flour samples ranged from >-
25 to <50 in terms of PC-1, with significant 
overlap. 

In Figure 6(b), PCA loading plot showed a 
prominent peak at approximately 0.02 to 0.03 on 
PC-1 at 350 nm wavelength, which gradually 
decreased to 998 nm. Although no significant 
anomalies were observed, the peak showed 
wavelength with the most substantial effect on 
PCA grouping. 

As shown in Figure 6a, the application of 
Multiplicative Scatter Correction (MNC) was 

used for optimal visualization to show the loading 
performance of PC-1 and PC-2 concerning 
genotypes. The distinction among the various 
groups became evident, primarily characterizing 
the yellow soybeans (K1-6), with significant 
contributions from greenish (K7) and black 
soybean (K8). Except for paste form, in the case 
of intact, crumble, and flour forms, soybean 
samples were dispersed across PC-2 negative 
region in Quadrants III and IV. Greenish 
soybean (K7) showed a more extensive spread, 
while black (K8) was positioned with the lowest 
PC-2 negative values. 

Figure 6b shows the loading value 
performance of PCA results. Anomalies in PC-1 
were evident in peaks and valleys spanning from 
380 nm to 790 nm, while PC-2 ranged from 430 
nm to 780 nm. In PC-1, approximately 82% of 
variances were described, and the line descended 
to -0.02 at its lowest point around 370 nm, 
followed by an increase to 0.02 at 460 nm. This 
value remained relatively constant until 
approximately 750 nm, which gradually decreased 
to -0.02 and continued steadily to the end of the 
range. The pattern observed in PC-2 followed a 
similar trajectory but with distinct lowest and 
peak points. The line initially descended from 380 
nm to almost -0.05 at the lowest point and 
ascended to peak value of 0.02, which was 
maintained until 700 nm. Subsequently, a decline 
to -0.02 was observed, followed by an increase to 
approximately -0.01 at about 820 nm. These 
anomalies affected sample grouping, with 
pronounced deviations in the spectral regions of 
380-470 nm and 700-800 nm due to variations in 
pigment levels, specifically carotene and 
chlorophyll, in the samples. 

 

 
 

(a) (b) 

Figure 6. PCA result of the classification of soybean, based on sample types: (a) score plot (b) loading plot using range 
normalization spectra preprocessing method. 
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(a) (b) 

Figure 7 PCA result of the classification of soybean, based on sample genotypes: (a) score plot (b) loading plot using 
multiplicative scatter correction spectra preprocessing method 

 
Black soybean is characterized by black outer 

skin, which contains anthocyanins, as 

documented by Yang et al. (2022). These 

anthocyanins significantly impact the interaction 

between black skin layer and light spectra, either 

reflecting a specific spectrum of light or being 

absorbed by particular molecules. Specifically, 

when examining the distribution of genotypes 

through PCA scores, some dissimilarities are 

frequently observed between paste and other 

forms. 

The implementation of physical treatment led 

to significant patterns in PCA plots. The 

condition of intact soybean, which was not 

subjected to any physical treatment, primarily 

reflected the composition of outer skin, resulting 

in a marked divergence from other soybean types, 

particularly the yellow ones. In contrast, physical 

treatments such as grinding exposed the inner 

layers of the soybeans, leading to a more uniform 

composition compared to other varieties. 

The results of PCA analysis showed that 

adding water served as a discriminative factor, 

segregating the samples into two clearly defined 

groups. Specifically, other preparation methods 

did not show different clusters, indicating that the 

specific crushing or sample size reduction had no 

significant influence on sample response to Vis-

NIR spectrum. 

 
Partial Least Square Regression (PLSR) 

Table 3 shows the coefficient of 
determination (R2) and root mean square error 
(RMSE) of calibration (C) and prediction (P) of 

various quality parameters for intact, crumble, 
flour, and paste of soybean obtained from Partial 
Least Squares (PLS) analysis. Several parameters, 
including protein, fat, ash, carbohydrate, and 
water contents as well as a* color, yielded 
inadequate models. In all cases, R2 values were 
consistently below 0.7, showing relatively low 
performance levels. This showed that the 
parameters could not be effectively detected in 
the specific Vis-NIR range of observation.  

Despite being a protein source, soybean 
showed a low R2 prediction across all groups, 
with the highest of 0.64 obtained in the paste 
form. Protein identification in spectroscopy is 
often detected by amino acids referring to the 
nitrogen content above 300 nm, specifically at 
346 nm in the visible range. However, traces of 
histidine were found in the Dika nut, contributing 
to the failure to detect amino acid responses at 
the energy levels observed at 380-400 nm 
(Okoronkwo et al. 2017). R2 value for fat was also 
low at 0.50, but peaks related to fat were found at 
537-770 nm without contributing to PLSR 
model. In contrast, Lapčíková et al. (2018) 
detected wavelength range of 300 to 550 nm for 
unsaturated fatty acid, with ash showing the 
highest R2 value of 0.37. Preece et al. (2009) 
reported significant wavelength for predicting 
ash content at 350, 360, 390, 410, 430, 480, and 
630 nm. Based on the results, similar peaks were 
found at 460-590 nm, with low concentrations of 
ash contributing to PLSR model. Although 
Chandaka et al. (2012) reported that the 
significant 750 nm could determine the amount 
of carbohydrate, wavelength at 630-750 nm 
found in this study did not affect the PLSR mode. 
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Wavelength contributing to PLSR model for 
determining water was found at 882 nm and 760–
970 nm, in line with the second overtones of O-
H bands, which indicated water absorption 
(Devianti et al. 2023). The calibration and 
prediction PLSR model for water was also low 
due to reduced intensity at wavelength above 900 
nm which was typical Vis-NIR spectroscopy. 
Based on Figure 1, the model demonstrated low 
ability in detecting a* value, as indicated by green 
or yellow with a specific black color shown by 
soybean samples. 

Crude fiber parameters, including chlorophyll, 
total carotene, and vitamin C showed effective 
model performance, achieving relatively high R2 
values across all groups, ranging from 0.80 to 
0.98. In this study, wavelength contributing to 
crude fiber appeared at 510-630 nm, while OIV 
(2021) reported the carboxymethyl cellulose 
absorbance at 540 nm.  

Chlorophyll in soybean seeds is mainly 
chlorophyll-a (C55H70MgN4O5) and 
chlorophyll-b (C55H70MgN4O6). In the visible 
range, the absorption peaks of chlorophyll-a 
occur at 430 nm and 662 nm, while chlorophyll-
b occur at 453 nm and 642 nm (Lopes et al. 2017; 
Shi et al. 2022; Yang et al. 2022; Zhu et al. 2018). 
Longoni et al. (2020) and Gebregziabher et al. 
(2022) reported chlorophyll and carotenes 
substances in the visible range, where R2 values in 
calibration and prediction played a significant role 
in specific sample classification. At 680 nm, 
soybean samples showed chlorophyll content 
that distinguished green color (Pahlawan et al. 
(2022). In the visible range, the absorption peaks 
of chlorophyll-a occur at 430 nm and 662 nm, 
while chlorophyll-b was found at 453 nm and 642 
nm ( Lopes et al. 2017; Shi et al. 2022; Yang et al. 
2022; Zhu et al. 2018). Peak in absorbance of 
around 670 nm found in the olive oil spectrum 
confirmed the presence of chlorophyll pigments 
(Lapčíková et al. 2018). At 500 nm, soybean 
samples indicated carotenoid content that 
distinguished yellow or darker (Pahlawan et al. 
2022). 

R2 values of vitamin C ranged from 0.87-0.98 
for calibration and prediction, with the highest 
observed for intact samples, particularly K8, as 
shown in Table 2. However, there is uncertainty 
regarding the impact of soybean seeds coat as the 
primary factor contributing to the elevated 
vitamin C levels. According to (Riscahyani et al. 

2019), the analysis of vitamin C can be obtained 
at the wavelength of 494 nm. The validation of 
the well-performing model ranged from 0.44 for 
L* parameter in the crumble sample to 0.96 for 
vitamin C in paste form. The only parameter with 
less affirmative validation was L* parameter, 
registering the lowest R2 value. However, the 
prediction accuracy at 0.71 indicated a more 
reliable model outcome, suggesting that physical 
treatments, such as milling, induced variations in 
the color characteristics of soybeans. The distinct 
darkening effect observed with water addition 
compared to the flour sample could be attributed 
to the interaction or bonding of water molecules 
with soybean particles.  

PLSR model for determining total carotene 
yielded high R2 values for calibration and 
prediction at wavelength 390, 536, 870, and 990 
nm. Moreover, the most relevant spectral 
variables for carotenoids were detected at the 
wavelength of 449, 448, and 450 nm (Afonso et 
al. 2017). The results also showed that PLSR 
model for predicting L* and b* values had high 
accuracy. The contrast between green (K7) and 
black (K8) soybeans was particularly 
pronounced, as indicated in the L* and b* 
parameters in the intact sample group, with R2 
values of 0.80 and 0.92. This significant 
difference in the characteristics of whole 
soybeans enhanced the model performance, 
allowing for the effective differentiation of color 
(green and black) from other yellowish samples. 
Subsequently, the results were adjusted by 
considering R2 values for validation and 
prediction. L* indicated lightness value in the 
range 0 (pure black) to 100 (pure white), 
representing light intensity that increased the 
absorption at the 400-500 nm spectrum band 
(Afonso et al. (2017). The a* value was identified 
as reddish colored sample that presents three 
peaks of great absorption in the 400-500 nm 
region of the spectrum. Meanwhile, yellow 
colored sample represented in b* profile showed 
significant peaks at 400-500 nm (Afonso et al. 
2017).  

Table 3 also shows the validation results of the 
calibration and prediction models, specifically in 
terms of RMSE, including RMSEC and RMSEP. 
Most proximate parameters, such as protein, fat, 
ash, and water, did not correlate significantly. 
Regarding RMSE values, crude fiber parameters 
showed higher values in intact preparation mode, 



Evaluation of Soybean Based on Chemical Characteristics and Vis-NIR Spectroscopy – Farid R. Abadi et al. 

73 

while paste form had the lowest RMSE. This 
phenomenon suggested that adding water to 
paste form significantly affected samples grouping. 

Based on chlorophyll, the lowest RMSE was 
observed in the flour form, potentially indicating 
more uniform sample conditions between the 
outer and inner layers of soybean containing 
chlorophyll. A similar trend was observed for 
total carotene, with the lowest RMSE values in 
the flour and paste forms. This pattern was also 
found in vitamin C parameter, where the paste 
form showed the lowest RMSE value. 

Regarding color parameters, physical 
treatment did not yield significant differences in 
RMSE. The comprehensive Mean Absolute 
Percentage Error (MAPE) assessment shown in 
Figure 8 further explored this aspect. The 
calibration model parameters suggested that the 
model accuracy was good for proximate 
parameters, while water showed less accurate 
measurements. In contrast, chlorophyll, total 
carotene, and L* were assessed as showing good 
accuracy, vitamin C and b* as reasonably accurate, 
and a* as not accurate. 

 
Table 3. R2 and RMSE of calibration and prediction of various quality parameters for intact, crumble, flour, and paste 

soybean 

Parameter Unit  
Calibration Prediction 

Intact Crumble Flour Paste Intact Crumble Flour Paste 
R2C RMSEC R2 RMSEC R2 RMSEC R2 RMSEC R2 RMSEP R2 RMSEP R2 RMSEP R2 RMSEP 

Protein (% wb) 0.5 1.13 0.59 0.76 0.61 0.87 0.64 0.85 0.56 0.91 0.55 0.97 0.63 0.93 0.68 0.85 
Fat (% wb) 0.53 0.83 0.29 0.84 0.13 1.09 0.69 0.59 0.5 0.89 0.28 0.81 0.11 0.98 0.47 0.7 
Crude Fiber  (% wb) 0.8 0.46 0.82 0.44 0.83 0.42 0.95 0.23 0.72 0.57 0.78 0.49 0.85 0.41 0.92 0.29 
Carbohydrate  (% wb) 0.66 0.69 0.68 0.7 0.58 0.8 0.8 0.54 0.33 0.98 0.72 0.72 0.52 0.94 0.78 0.55 
Ash (% wb) 0.09 0.36 0.22 0.38 0.23 0.38 0.15 0.38 0.02 0.37 0.37 0.37 0.16 0.41 0.1 0.27 
Water (%) 0.66 0.39 0.5 0.43 0.78 0.31 0.61 0.75 0.56 0.43 0.4 0.41 0.91 0.21 0.76 0.66 
Chlorophyll  (mg/100g) 0.93 1.11 0.85 1.63 0.95 0.96 0.88 1.46 0.91 1.28 0.77 2.06 0.97 0.76 0.87 1.6 
Total Carotene (mg/100g) 0.85 0.25 0.83 0.28 0.86 0.33 0.92 0.18 0.77 0.32 0.83 0.28 0.91 0.2 0.92 0.18 
Vitamin C  (mg/100g) 0.95 13.67 0.92 18.9 0.82 29.12 0.98 9.36 0.94 15.65 0.88 23.54 0.87 24.16 0.95 14.5 
L*  0.8 6.43 0.66 4.56 0.64 7.76 0.77 5 0.86 4.83 0.71 4.28 0.59 7.41 0.61 6 
a*  0.57 3.52 0.71 2.06 0.66 2.29 0.74 1.37 0.4 4.47 0.73 2.12 0.9 1.08 0.6 1.36 
b*   0.92 3.33 0.47 4.6 0.43 2.96 0.73 3.04 0.92 3.47 0.38 3.71 0.42 3.53 0.7 2.96 

 
 

 

Figure 8  MAPE of calibration and prediction for all parameters 
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CONCLUSION 
 

In conclusion, this study investigated the 
relationship between soybean color and chemical 
parameters, examining the impact of various 
sample preparation methods. The results showed 
that processing reduced color differences 
compared to intact soybeans. Statistical analysis 
showed significant color variations among 
genotypes and preparation methods due to 
varying composition and pigmentation. 
Furthermore, PCA differentiated soybean 
samples based on specific components and 
showed the role of water addition. PLSR models 
predicted some parameters effectively, but 
protein and fat showed weaker correlations. 
Reflectance spectra showed specific patterns, 
with intact soybean having lower reflectance. The 
results provided valuable insights into the 
relationship between soybean color, sample 
preparation method, and spectral characteristics, 
including the potential for predicting biochemical 
parameters using spectroscopic data. However, 
model accuracy varied by parameter and 
preparation method, emphasizing the need for 
further investigation to improve predictions, 
specifically for protein and fat. 
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